Agricultura de precisión y sostenibilidad

Aplicaciones de sensores

El programa de tecnologías de sensores se integra con la mayoría de los otros programas de NIFA. Casi todos los aspectos de la producción, el procesamiento y la gestión en los sistemas agrícolas y alimentarios (incluidos la silvicultura y los recursos naturales) implican la medición de los atributos del producto / recurso (como cantidad, calidad, tamaño, condición) o su entorno (como las impurezas de los alimentos o aire, agua y suelos agrícolas / forestales).

Las economías rurales y sus infraestructuras también se ven afectadas. Sus actividades biométricas incluyen inspección, monitoreo, seguimiento, inventario y valoración. El número de variables de medición, y su frecuencia de medición y nivel de detalle, exige tecnologías rápidas, automatizadas y de alta resolución. En aras de la eficiencia y la administración inteligente, se recopilan datos cada vez más voluminosos que deben analizarse, interpretarse y aplicarse más a fondo para respaldar la toma de decisiones inteligente. Se requieren avances en biometrología y tecnologías de la información para abordar nuestra necesidad de información oportuna y confiable que tenga relevancia temporal y espacial.

La seguridad y la calidad de los alimentos representan uno de los mayores problemas / preocupaciones públicas a nivel nacional. La seguridad y la calidad dependen de métodos de inspección y monitoreo que puedan detectar contaminantes y discriminar productos defectuosos (o de mala calidad). Mientras que las inspecciones manuales, microscópicas o de bioensayo no se pueden realizar de forma rápida y precisa en el 100 por ciento de cualquier producto alimenticio, las tecnologías de sensores e instrumentación actualmente en desarrollo y las pruebas prometen ofrecer capacidades de inspección que son precisas, rápidas (en tiempo real) y consistente. Estas tecnologías pueden abarcar desde detectar: ​​magulladuras internas de manzanas hasta 10 células de Listeria (un patógeno alimentario particularmente virulento) hasta infestaciones de insectos en la carga de grano de un barco.

La calidad ambiental es otra área en la que el monitoreo basado en sensores puede resultar útil. Por ejemplo, los operadores de alimentación de animales pueden usar el monitoreo de la calidad del aire alrededor de los animales confinados para mantener la emisión de amoníaco o de olores dentro de límites aceptables. El monitoreo del agua para la escorrentía de nitrógeno y fósforo de las tierras agrícolas puede ayudar a regular la proliferación de algas de agua dulce y la hipoxia de la zona costera. La capacidad de medir de forma rápida y precisa el secuestro de carbono en los suelos puede facilitar una aplicación más generalizada de un mercado comercial y de créditos de carbono.

Sin embargo, este tipo de actividades de medición crean problemas especiales porque los elementos que se miden son moleculares y deben cuantificarse en grandes áreas terrestres. Sin embargo, estas aplicaciones son científicamente posibles; Queda por desarrollar la capacidad de ingeniería y tecnología para hacerlos económicos y prácticos.

Leer más
Agricultura de precisión y sostenibilidad

Introducción al procesamiento de imágenes RGB tomadas por drones para monitoreo del estado de cultivos

La era AgTech ya es un hecho y las tecnologías aplicadas al agro siguen intensificándose. Desde hace aproximadamente 6 años se conoce de drones para uso agropecuario en los cuales se puede transportar diferentes sensores y cámaras para el diagnóstico a campo y la toma de decisiones en función de información digital (Vélez, 2017). El nivel de adopción está creciendo año a año y el equipo de agricultura de precisión de INTA lleva a cabo un trabajo minucioso en lo que respecta a la información que generan estas herramientas.

Las imágenes satelitales son una de las herramientas digitales que el agro utiliza en la actualidad. Anteriormente se usaban aquellas que no tenían un costo tan elevado (Landsat 7 y Landsat 8), la información relevada era muy útil, pero la captura de imágenes se hacía cada 16 días dado que el satélite demoraba ese período de tiempo para regresar al mismo punto y muchas veces el factor climático no permitía buenas tomas para definir manejos en los cultivos.

Dada la dificultad para conseguir las imágenes en el momento oportuno es que algunas empresas comenzaron a sacar fotografías aéreas desde aviones tripulados y entregando la información ya procesada para poder realizar el análisis agronómico correspondiente. Esta actividad se desarrolló y dio buenos resultados agronómicos, pero en algunos casos el factor costo y logística para sacar las fotografías en vuelos programados era una limitante que aún se incrementaba cuando se deseaba hacer un seguimiento de los cultivos con varios relevamientos en su ciclo (Velez, 2017).

El uso de drones para monitoreo agropecuario está incrementándose en los últimos años. Cuando es necesario el monitoreo de grandes extensiones con la finalidad de detectar presencia de malezas, fallas en la siembra, estado de los cultivos, o bien reflejar alguna problemática en el campo o áreas urbanas, es necesario contar con información rápida y detallada de la situación. Es por ello que se utilizan aeronaves no tripuladas (UAV), comúnmente llamados drones.

Objetivo

El objetivo de este trabajo fue implementar técnicas básicas de procesamiento de imágenes y compartir algunas experiencias realizadas con un dron provisto de una cámara RGB y sus posibles usos relacionados al sector.

Materiales y métodos

La experiencia se realizó con imágenes provistas por un dron marca Dji Spark capturadas por su cámara de fábrica RGB de 12 megapixels. Las tomas fueron realizadas durante la campaña 2017/18 en diferentes establecimientos agropecuarios.

Especificaciones técnicas del dron:

Marca DJI
Modelo Spark Flye More Combo
Tiempo de vuelo 16 minutos, real 12 minutos por batería.

Resultados

El dispositivo utilizado para la experiencia corresponde a un equipo de gama media a baja, con buena relación beneficio/costo debido a las prestaciones que ofrece con un valor de mercado relativamente bajo. Dentro de la fotointerpretación, una de las herramientas más utilizadas es el análisis visual para determinar patrones distintos en una imagen dentro del rango que el ojo humano lo permite.

Las imágenes se presentan con un breve detalle del uso posible de esta herramienta para el monitoreo de actividades agropecuarias.

Leer más
Agricultura de precisión y sostenibilidad

El riego de precisión con sensores reduce un 50% el consumo de agua en plantaciones

Investigadores del grupo Riego y Ecofisiología de Cultivos del Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC) han demostrado los beneficios, en cuanto a rentabilidad, capacidad de ahorro de agua y fiabilidad, de los métodos de riego de precisión en plantaciones comerciales.Estos sistemas, basados en sensores, permiten programar el riego de forma automática desde cualquier ordenador o dispositivo móvil

Tras los análisis, los especialistas han concluido que estas técncias, además de mejorar la producción de ciertos cultivos y reducir hasta un 50% el consumo de agua, requieren escasa formación específica por parte del agricultor y son, por tanto, accesibles para cualquier tipo de usuario. Pero, pese a sus ventajas, raramente se emplean en fincas agrícolas.

Los investigadores del IRNAS han analizado las principales características de tres métodos de riego de precisión empleados hoy día en agricultura y basados en sensores que permiten programar el riego de forma automática desde cualquier ordenador o dispositivo móvil.

Plantas que actuan como ‘biosensores’

En un estudio, publicado en la revista Agricultural Water Management, los autores expertos ha descrito los beneficios del uso de estos ssitemas que a su vez «emplean la planta como un ‘biosensor’ que suministra información muy útil para la programación del riego, ya que se basa en su propia respuesta a a las condiciones hídricas que hay en la finca en cada momento”, explica el responsable principal del proyecto, José Enrique Fernández, investigador del IRNAS.

Los expertos también han identificado estos métodos como fiables y rentables para su aplicación en fincas grandes. “Tras analizar el precio, las necesidades de instalación y mantenimiento y su complejidad a la hora de interpretar la información registrada por cada uno de ellos, se puede afirmar que se trata de métodos apropiados y accesibles a cualquier usuario para el control del riego en este tipo de plantaciones”, selala.

Otra de las conclusiones del trabajo es la posibilidad de generar nuevas opciones de riego controlado destinadas a mejorar la producción de los cultivos. “Estos sistemas -dice Fernández- permiten abaratar el riego sin afectar a su productividad y dan lugar, en casos como el olivo o la vid, a un aumento en la calidad tanto del aceite de oliva como del vino, productos que mejoran con el riego moderado o deficitario”.

Los sistemas están basados en sensores que permiten programar el riego desde cualquier ordenador o dispositivo móvil

Diez años de estudio

El equipo ha evaluado parámetros relacionados con el estrés hídrico, como la cantidad de agua que cada árbol consume al día, las variaciones del diámetro de su tronco o el potencial de turgencia en la hoja. En este sentido, el estudio recoge la experiencia de más de un decenio de trabajo en el cultivo y análisis de tres métodos de riego en diferentes especies de árboles frutales, habituales en la provincia de Sevilla, como el olivo, almendro, ciruelo y naranjo.

En el primer método, los expertos cuantificaron la cantidad de agua que los árboles consumían durante el día mediante un conjunto de sensores con forma de aguja que insertaron en el interior del tronco. “Los sensores nos permitieron cuantificar el flujo de savia del cultivo y deducir si el agua disponible era adecuada”, señala el autor.

Con el objetivo de analizar el segundo método de riego, emplearon dendrómetros de precisión, es decir, sensores que se unen al exterior del tronco y calculan cuánto disminuye su diámetro ante la falta agua y el incremento cuando el riego es abundante. “En función de los valores de esta variable determinamos el grado de estrés hídrico del árbol y, por tanto, la necesidad que tenía de agua”, sostiene.

Por último, la evaluación del tercer método, también relacionado con la hidratación del árbol, consistió en analizar el potencial de turgencia en la hoja. Se emplearon sensores de presión muy precisos que, tras unirlos a la superficie de la hoja, permitieron evaluar lo hidratada que estaba y determinar si el árbol se encontraba o no bien regado.

Aaplicaciones móviles

Estos resultados han permitido abrir líneas de trabajo con el objetivo de establecer nuevos protocolos para el riego automático de diferentes tipos de plantaciones, incluyendo fincas grandes y con elevada variabilidad de suelo y cultivo. “Se trata de calcular de forma automática la dosis y frecuencia de riego. Para ello, pretendemos crear una aplicación que use la información procedente de este tipo de métodos para activar la bomba y electroválvulas propias del sistema de riego”, dice el investigador.

En estos momentos el equipo también trabaja en la implantación de sistemas de aviso para agricultores mediante aplicaciones para dispositivos móviles que informen con mensajes sobre la cantidad de agua de riego más apropiada en cada momento del día. Esta información procedería de los registros obtenidos previamente mediante el uso de los diferentes métodos evaluados en el estudio.

Los resultados son fruto de varios proyectos de investigación, entre los que destacan los proyectos Riego deficitario controlado del olivar de alta densidad: programación automática basada en la fisiología de la planta y en la economía de manejo del cultivo y Mejora de la calidad del aceite en el olivar en seto mediante estrategias de riego, financiados por el Ministerio de Economía y Competitividad y la Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía, respectivamente.

Leer más
Agricultura de precisión y sostenibilidad

Los desafíos y beneficios de adoptar nuevos sistemas digitales

Desafío n. ° 1: ¿Qué puede hacer el procesamiento automático de pedidos por mi negocio?
Los procesos de entrada de datos manuales son lentos y corren el riesgo de sufrir los efectos de errores humanos. El proceso estándar implica volver a introducir los pedidos enviados por correo electrónico en un sistema de planificación de recursos empresariales (ERP). Por el lado del cliente, esto puede resultar en retrasos y pérdida de negocios, especialmente durante la temporada alta. En el aspecto empresarial, esto pone al personal bajo presión y aleja los recursos de áreas más valiosas.

La solución: un sistema completamente integrado elimina las ineficiencias de la entrada manual. El cliente ingresa los datos solo una vez, generalmente a través de un portal de pedidos o una conexión EDI. Los pedidos se pueden actualizar en tiempo real a medida que cambia el estado de los pedidos. El proceso de pedido resultante es más ágil y valioso para el cliente, y mucho más eficiente para el proveedor.

Los resultados: un minorista agrícola estadounidense de nivel medio adoptó el procesamiento de pedidos automatizado para sus 2050 transacciones anuales, que generalmente se realizan a través de una combinación de teléfono, correo electrónico y pedidos postales.
La mayoría de los pedidos tardaron 38 minutos en procesarse, aunque los pedidos enviados por el personal de ventas de campo por correo electrónico al equipo de administración de ventas requieren un tiempo de procesamiento adicional de 5 minutos. Después de cambiar al proceso de pedido totalmente automatizado de Proagrica, estos tiempos y otros costos asociados se redujeron considerablemente, lo que resultó en un aumento sustancial de los ingresos. Después de dos años, los ingresos totales experimentaron un aumento del 31%.

MÁS DE PRECISIONAG
Reloj de mercado
29 de octubre de 2020
Munckhof Fruit Tech Innovators lanza agricultura de precisión para sus sistemas de pulverización
Por PrecisionAg
Reloj de mercado
23 de octubre de 2020
FIRA: El registro regular finaliza el 30 de noviembre; Admisión de cortesía para productores
Por PrecisionAg
Agricultura digital
22 de octubre de 2020
Startup hace que la cadena de suministro de granos sea ‘a prueba de Covid’ con IA
Por PrecisionAg
Desafío n. ° 2: ¿Cómo puedo mejorar la eficiencia en mis operaciones comerciales?
Las empresas que dependen de las operaciones manuales dedican amplios recursos a volver a introducir la información del cliente en el ERP de la empresa en el mejor de los casos, sin considerar la pérdida de productividad como resultado de un error humano. Por ejemplo, un estudio del gobierno australiano estimó que hasta el 30% de las facturas contienen información incorrecta, destacando cuán frecuente puede ser esto en las transacciones comerciales.

La solución: Automatizar el proceso de pedido del cliente ayuda a aliviar la presión y mejorar la eficiencia tanto a largo como a corto plazo. A corto plazo, los pedidos automatizados son mucho más eficientes de procesar, lo que ahorra tanto el tiempo de entrada requerido como el tiempo necesario para resolver cualquier problema derivado de un error humano. A largo plazo, la ganancia de recursos se puede redistribuir hacia áreas de la empresa que agregan más valor, promoviendo el crecimiento y reduciendo el trabajo innecesario.

Los resultados: un informe publicado por la respetada empresa de investigación Gartner encontró que el costo de procesamiento de facturas se reduce entre un 70% y un 90% cuando se realiza de forma electrónica. Un estudio realizado por los minoristas Landmark y Elders también encontró un ahorro de $ 18 por transacción.
Naturalmente, existen beneficios adicionales que no son tan fáciles de medir: liberar tiempo valioso o la capacidad de crecer sin aumentar la cantidad de personal, por ejemplo. Proagrica ha colaborado con empresas en toda la cadena de suministro, ayudándolas a perfeccionar sus procesos para garantizar una eficiencia óptima y, en última instancia, un negocio más rentable.

Desafío n. ° 3: ¿Cómo puedo aumentar la fidelidad de los clientes?
Las empresas de la cadena de suministro agrícola buscan activamente ofrecer un excelente servicio al cliente sin dejar de ser competitivas. Sin embargo, el aumento de los proveedores genéricos y comerciales en línea ha llevado a muchos clientes a elegir a su proveedor basándose principalmente en el costo sobre cualquier otro factor. Este cambio en el mercado destaca la necesidad de ofrecer un servicio completo que agregue valor para mejorar la retención y la lealtad de los clientes.

La solución: las empresas agrícolas pueden ampliar su ventaja competitiva mediante la integración de transacciones electrónicas en sus sistemas existentes y así ofrecer un servicio eficiente, rápido y fácil de usar para sus clientes. En lugar de actuar como meros proveedores, las empresas deben reposicionarse como socios invaluables, capaces de proporcionar un proceso de pedido automatizado con actualizaciones en vivo e información de estado en tiempo real.

Los resultados: McKinsey, la firma de consultoría de gestión global, ha sugerido que la satisfacción del cliente conduce a mejoras directas y mensurables de la rentabilidad, con buenas tasas de satisfacción del cliente que ven reducciones del 10-20% en el costo de servicio y hasta un 15% de crecimiento en los ingresos. Proagrica ya ha trabajado con empresas en toda la cadena de suministro, ayudando a integrar el flujo de trabajo y los sistemas internos para impulsar mejor la lealtad de los clientes. A pesar de un mercado turbulento, los agronegocios están bien posicionados para adoptar la innovación tecnológica y mejorar su oferta.

Desafío n. ° 4: ¿Cómo puedo responder más rápido a los clientes?
El procesamiento manual es el método estándar para manejar los pedidos de los clientes para empresas no integradas. Sin embargo, esto conlleva ciertos riesgos: son posibles grandes retrasos en cada etapa de una transacción, desde que el cliente realiza un pedido hasta recibir la confirmación del pedido. Si las respuestas son generalmente lentas y confusas, esto no solo resultará en una menor productividad, sino en una erosión gradual de la confianza del cliente.

La solución: las transacciones electrónicas permiten a las empresas responder a sus clientes con mayor rapidez y contar con la información correcta. Los clientes pueden recibir una respuesta mucho más rápida, casi como si estuvieran realizando el pedido directamente en el ERP del proveedor. Esta capacidad de responder rápidamente con información precisa y actualizada es directamente beneficiosa para la satisfacción del cliente y, por lo tanto, la retención del cliente.

Los resultados: Proagrica está colaborando con empresas en toda la cadena de suministro agrícola, equipándolas con la infraestructura que necesitan para responder con rapidez y precisión a la demanda de los clientes. Según un informe de una encuesta conjunta de 2014 de BIA / Kelsey y Manta, el 61% de las pequeñas y medianas empresas reciben más de la mitad de sus ingresos de clientes habituales en lugar de nuevos negocios. Los clientes habituales también aportan el mayor valor, gastando un 67% más que un cliente nuevo. Las respuestas rápidas son una parte vital para preservar las relaciones con los clientes y una faceta esencial de un negocio exitoso.

Leer más
Agricultura de precisión y sostenibilidad

LA FERTIRRIGACIÓN COMO TECNOLOGÍA DE AGRICULTURA DE PRECISIÓN

El riego por fertilización es un método de aplicación de fertilizantes, en el que los fertilizantes disueltos se entregan al cultivo a través del sistema de riego.

Esta tecnología brinda la oportunidad de aplicar dosis precisas de agua y fertilizantes al cultivo y, por lo tanto, si se diseña correctamente, puede ser una importante tecnología de agricultura de precisión .

Por lo general, las soluciones de fertilizantes concentrados se preparan en tanques de almacenamiento y luego se inyectan en el agua de riego mediante inyectores de fertilizante. El sistema de riego puede ser riego por goteo, sistema de aspersión, pivote o diferentes configuraciones de sistemas hidropónicos.

¿QUÉ PROPIEDADES DE LA FERTIGACIÓN LA HACEN UNA TECNOLOGÍA DE AGRICULTURA DE PRECISIÓN?
1. Cantidad precisa: la fertirrigación permite una aplicación precisa y dirigida de agua y fertilizantes al sistema radicular.
A diferencia de la aplicación de fertilizantes al voleo, el riego por goteo permite aplicar cantidades precisas de agua y fertilizantes en las proximidades de la zona de las raíces de cada planta.

2. Momento preciso: los nutrientes se pueden aplicar en el momento en que el cultivo los necesite.
En ausencia de un sistema de fertirrigación, es difícil, o incluso imposible, aplicar fertilizantes cuando las plantas son más grandes y el acceso al campo es limitado. En tales casos, los fertilizantes a menudo se aplican demasiado pronto, lo que resulta en pérdidas de nutrientes debido a lixiviación, escorrentía, volatilización, etc.

En la mayoría de los tipos de fertirrigación, esta limitación no existe. Una vez instalado el sistema de fertirrigación, los fertilizantes se pueden aplicar fácilmente en la etapa de crecimiento adecuada, de acuerdo con los requisitos del cultivo.

Sistema de fertirrigación automatizado

3. Tasas precisas de fertilizantes
Los sistemas de fertirrigación avanzados pueden alcanzar tasas de aplicación de alta precisión mediante el uso de equipos de alta tecnología, como inyectores y sistemas de control computarizado, que se calibran y ajustan cuidadosamente. El ajuste automático de las proporciones de inyección de las soluciones de fertilizantes de los tanques de reserva al agua de riego depende de la entrada de los sensores de EC y pH, así como de los medidores de flujo de agua y fertilizante.

Además, se puede usar más de un tanque de reserva, lo que le da al productor la flexibilidad de aplicar diferentes combinaciones de nutrientes a diferentes parcelas, o en diferentes momentos, ajustando una proporción de inyección diferente para cada tanque.

4. Mejor disponibilidad de nutrientes y eficiencia de absorción
Debido a que los fertilizantes se disuelven en el agua de riego, la planta puede absorber instantáneamente los nutrientes, tan pronto como se apliquen.

¿CUÁLES SON LAS LIMITACIONES PARA EL USO DE LA FERTIGACIÓN EN AGRICULTURA DE PRECISIÓN?
Las limitaciones para el uso de fertirrigación en agricultura de precisión son a menudo el resultado del diseño del sistema de fertirrigación.

Las unidades de campo o secciones de campo suelen estar predeterminadas. Aunque cada una de esas secciones de campo se puede gestionar por separado, a menudo es difícil responder a variaciones dentro de la sección de campo.
A excepción de algunas nuevas empresas, la mayoría de los sistemas de fertirrigación existentes aún no tienen la capacidad de utilizar la retroalimentación de los sensores instalados en el campo y ajustar las dosis de fertilizante en consecuencia.
Cuando la variabilidad entre los campos de la finca es alta (diferentes tipos de cultivos, diferentes etapas de crecimiento, diferentes condiciones del suelo, etc.), tener un conjunto de tanques de reserva para cada cabezal de riego no siempre es lo suficientemente flexible para aplicar dosis precisas de fertilizantes y nutrientes. ratios para las diferentes secciones de campo.
En resumen, la fertirrigación tiene el potencial de ser considerada una tecnología de agricultura de precisión. Si se elige el sistema más adecuado a las condiciones del cultivo y del campo y se lo diseña correctamente, se puede lograr una fertilización y un riego de muy alta precisión.

Leer más
Agricultura de precisión y sostenibilidad

Salidas profesionales agricultura de precisión con drones

La agricultura de precisión es una especialidad dentro del sector dedicada a la aplicación de nuevas Tecnologías de la Información (TIC) a tareas agrícolas con el objetivo de mejorar la productividad de los cultivos y disminuir el impacto medioambiental. El uso de aeronaves controladas por control remoto y sus software especializados para agricultura producen un cambio en el modo de controlar los cultivos y suponen grandes ahorros tanto en tiempo como en dinero para los agricultores. La agricultura de precisión con drones pretende controlar el estado de los cultivos gracias al mapeo y la teledetección para mejorar el rendimiento de los mismos y aprovechar más eficientemente los recursos.

¿En qué consiste la agricultura de precisión con drones?
La agricultura de precisión engloba un conjunto de técnicas y de tecnologías que nos permiten conocer la salud de las plantas y cultivos. Gracias a ello podemos detectar a tiempo cualquier problema de insuficiencia de nutrientes o posibles plagas y actuar a tiempo para que no causen pérdidas significativas. Hasta la fecha, establecer una agricultura de precisión para nuestros cultivos suponía un gran coste económico y, por lo tanto, estaba al alcance de muy pocos. Ahora, y gracias a los drones especializados en agricultura, la realización de teledetección y control aéreo en los campos es una apuesta segura para los agricultores, con la que además ahorrarán tanto en recursos como en tiempo invertido en la revisión manual de las plantas.

El sistema de trabajo en la agricultura de precisión con drones se organiza en tres etapas:

En primer lugar, el piloto profesional de drones sobrevuela con la aeronave la extensión de terreno que se quiere analizar recolectando una serie de datos. Éstos se obtienen gracias a cámaras infrarrojas, multiespectrales y sensores que realizan la monitorización del cultivo y del suelo y los mapas de producción.
Los datos e imágenes recolectadas son procesadas por los software para agricultura de precisión para poder llevar a cabo un análisis de la situación de los cultivos en tiempo real.
Finalmente, el agricultor realizará las medidas necesarias para solventar los problemas que se hayan detectado tras el proceso. Por ejemplo, mejora del riego en zonas donde los cultivos no reciben suficiente cantidad de agua, uso de plaguicidas si se detecta una posible plaga…
¿Qué podemos hacer con drones en la agricultura?
La agricultura de precisión ayuda a conocer mejor el terreno a explotar para mejorar su producción y minimizar efectos negativos en la naturaleza. Tenemos que conocer en qué zonas hay infestación de la malezas, dónde es necesario aplicar más dosis de fertilizante, qué partes son menos fértiles, entre otras. Algunas de las tareas que podemos desarrollar en la agricultura de precisión con el uso de drones son:

Detección de estrés nutricional de los cultivos.
Monitoreo para detectar plagas, enfermedades y malas hierbas.
Seguimiento del desarrollo y crecimiento de los cultivos en tiempo real.
Control directo de los cultivos y del riego.
Humedad del terreno.
Supervisión de áreas en las que se han aplicado productos fitosanitarios. El tratamiento con plaguicidas y otros productos químicos son nocivos para el ser humano. Tanto la supervisión como la aplicación de productos fitosanitarios con drones hacen que el uso de eaeronaves no tripuladas sea cada vez más frecuente entre los profesionales de la agricultura.
Ventajas de la teledetección con drones
La teledetección de cultivos con RPAS ayuda en la toma de decisiones y aporta rigor a los estudios convencionales del terreno. Gracias a los drones especializados en agricultura:

Podemos tener un control en tiempo real de nuestras explotaciones. Los software que utilizan tecnología con imágenes multiespectrales, infrarrojas e hiperespectrales, como PIX4D mapper o Layers de HEMAV, geolocalizan las imágenes y las transmiten a un dispositivo (móvil, tablet u ordenador) para elaborar mapas de valor.
Reducimos costes de tiempo y dinero. Los datos obtenidos con el drone nos permiten tomar decisiones a tiempo en cuanto a la cantidad de agua que necesitan los cultivos, la necesidad de aplicación de plaguicidas o fertilizantes. Podemos conocer el estado de todo el terreno en menos de una hora (dependiendo de las hectáreas de la explotación) y actuar en consecuencia de los resultados en el mismo día, conociendo las necesidades de los cultivos por zonas y ahorrando en el gasto de recursos y productos químicos.
Obtenemos resultados rigurosos y de calidad. Las herramientas y aplicaciones especializadas en la agricultura de precisión aérea son más precisas que el ojo humano. Elaboran mapas y aportan información del estado interno de la planta sin necesidad de realizar análisis manuales de los cultivos.
El sector agrícola es uno de los más demandantes de piloto de drones profesionales. Muchos agricultores y dueños de grandes explotaciones requieren del servicio de pilotos y empresas especializadas en la agricultura de precisión con drones para mejorar el rendimiento y optimizar sus producciones.

Recuerda que para realizar operaciones profesionales o con fines comerciales con drones es necesario cumplir con los requisitos que establece AESA:

Ser mayor de 18 años.
Tener el certificado médico aeronáutico LAPL.
Estar en posesión de los conocimientos teóricos para obtener la licencia de piloto de drones: curso de piloto de drones avanzado.
Estar habilitado en el modelo o los modelos de drone que se vayan a pilotar.

Leer más
Agricultura de precisión y sostenibilidad

Desarrollan drones para hacer el monitoreo de plagas

El proyecto está siendo desarrollado por la compañía de jóvenes emprendedores “Raptors Maps”, con el apoyo del MIT (Instituto de Tecnología de Massachusetts). El proceso se lleva a cabo mediante la captura de imágenes multi-espectrales sobre los cultivos, que el dron envía a un servidor donde son analizadas, pudiendo el agricultor acceder a los datos, conteos y demás parámetros necesarios para un adecuado control de las plagas.

Hortoinfo.- La compañía norteamericana formada por jóvenes emprendedores “Raptor Maps”, está desarrollando un tipo de drones para realizar el monitoreo de plagas en los cultivos, según publica el rotativo “The Boston Globe”.

El proyecto está apoyado por el Instituto de Tecnología de Massachusetts (Massachusetts Institute of Technology – MIT), que ha ayudado a su financiación con una aportación de cien mil dólares, al ganar los jóvenes promotores un concurso frente a otros 193 participantes.

El proceso se lleva a cabo mediante la captura de imágenes multi-espectrales sobre los cultivos, que el dron envía a un servidor donde son analizadas, pudiendo el agricultor desde su ordenador, móvil o tablet, acceder a los datos, conteos y demás parámetros necesarios para un adecuado control de las plagas.

El equipo de “Raptor Maps” está compuesto por Edward Obropta y Forrest Meyen, candidatos a doctorado en el departamento de Aeronáutica y Astronáutica Instituto de Tecnología de Massachusetts, y Nikhil Vadhavkar es candidato a doctor en Ciencias de la Salud y Tecnología de la división del MIT.

Estos jóvenes promotores iniciaron la compañía «Raptor Maps” en julio 2014, durante una expedición financiada por la NASA en Idaho», dijo Vadhavkar en un comunicado. Vadhavkar había dirigido previamente un equipo utilizando aviones no tripulados para entregar suministros médicos de emergencia en países en desarrollo, a través de una donación de la Fundación Bill y Melinda Gates.

Leer más
Agricultura de precisión y sostenibilidad

LAS CUATRO R DE PRECISION AG

Lo que ellos son

Fuente correcta, tasa correcta, tasa de tiempo y el lugar correcto. Estas son las 4R de ag que la mayoría de las personas involucradas en la agricultura han escuchado antes. El concepto 4R tradicionalmente se centró en la administración de nutrientes, pero esas mismas ideas ahora tienen aplicaciones agrícolas de precisión.

El director de Investigación Agrícola Práctica y agronomía en Beck’s Hybrids, Jim Schwartz, dice que el objetivo de las 4R es «encontrar una manera de pastorear mejor los recursos para que podamos continuar cultivando cultivos y ser más eficientes, efectivos y ambientalmente sostenibles».

Los productores de soja estadounidenses se esfuerzan por ser los más sostenibles del mundo. Mantenerse al tanto de las innovaciones más recientes en el panorama en constante cambio de la tecnología y la agronomía ayuda a los agricultores estadounidenses a mantener su ventaja competitiva.

Beneficios para los agricultores

Schwartz menciona que el concepto de las 4R tiene algunos conceptos erróneos o tergiversaciones. Las 4R no son de ninguna manera un pacto ni están grabadas en piedra, sino un marco para el uso de la tecnología. Lo que es bueno para una granja puede no ayudar a otra; las 4R están destinadas a ser fluidas para cada operación. Estos usos individuales son la base de la agricultura de precisión en una granja y aplicaciones específicas de campo.

Schwartz cree que los beneficios para los agricultores de una estrategia 4R en agricultura de precisión incluyen maximizar la rentabilidad, equilibrar la gestión de la carga de trabajo y la sostenibilidad ambiental.

“El beneficio para el agricultor es que es más efectivo; están ganando más dinero porque comprenden mejor dónde, cuándo, qué y cómo postularse para que puedan crecer más ”, continúa Schwartz. “El beneficio para el agricultor es obtener o mantener el rendimiento gastando menos dólares. Los agricultores quieren hacer lo correcto, tanto por su explotación como por el medio ambiente «.

Schwartz dice que cuando escucha las 4R, considera: «Pensemos en crear e implementar un sistema que sea más eficiente y efectivo, tanto en lo que respecta al costo como al medio ambiente». Eso es sostenibilidad, y eso es lo que la tecnología agrícola y la tecnología agrícola de precisión pretenden hacer.

Mirando hacia el futuro

Actualmente, saber el “momento adecuado” es reactivo o se reduce a una suposición fundamentada. Las tecnologías predictivas apuntan a cambiar esa posición. “Gran parte de lo que hacemos ahora en agricultura de precisión es post-mortem”, afirma Schwartz. «El siguiente paso es la creación de algoritmos e [inteligencia artificial] para que comencemos a tomar decisiones en tiempo real».

Al considerar cómo abordar estas innovaciones, Schwartz dice: «Lo que se necesita es la voluntad de los agricultores para adoptar estas prácticas». Los agricultores recopilan información, pero evaluar, comprender y utilizar esos datos para tomar decisiones sigue siendo un desafío para algunos. Si los agricultores no están seguros de cómo aplicar las 4R a sus operaciones, Schwartz recomienda ponerse en contacto con investigadores de universidades locales o conversar con un agrónomo.

Para la agricultura y las 4R en su conjunto, la agricultura de precisión tendrá un gran impacto en la recopilación de información, la comprensión de la información y la implementación de la información. A medida que los agricultores individuales adoptan la agricultura de precisión, toda la industria puede utilizar la información para agilizar procesos instantáneos, como la identificación de plagas, por ejemplo. Schwartz cree que desarrollar procesos para saber cuándo y dónde es probable que se desarrolle una enfermedad en un campo y actuar de manera preventiva para prevenir la enfermedad es solo una de las formas en que las 4R pueden beneficiar a la industria.

El concepto de las 4R ha existido durante años, pero es hora de analizar de nuevo cómo la ag de precisión mejora la fuente correcta, la tasa correcta, el tiempo de tasa y el lugar correcto. El uso de la tecnología disponible para informar las 4R es ventajoso para los agricultores. Evalúe las prácticas y eficiencias tecnológicas actuales de su granja y determine cómo la aplicación de las 4R podría darle un impulso en los próximos años.

Leer más
Agricultura de precisión y sostenibilidad

LA REVOLUCIÓN DIGITAL, LA AGRICULTURA DE PRECISIÓN Y LA AGRICULTURA DE CONSERVACIÓN

La agricultura de conservación y la digitalización son dos transiciones que el mundo agrícola debe aceptar. Estos cambios de raíz y rama deben implementarse a un ritmo sin precedentes, sin mencionar la presión de los medios igualmente única. No es exagerado llamar revoluciones a estos cambios. Son de naturaleza radicalmente diferente. El primero es biológico, sistémico y natural, y se lleva a cabo dentro del mundo agrícola, mientras que el segundo es altamente tecnológico, electrónico e “importado” a la agricultura. Está haciendo grandes avances y aprovechando innovaciones como robots , sensores, agricultura de precisión, plataformas y comunicación directa. Bien podría dar lugar, paulatinamente, a un big bang en el paisaje agrícola, equivalente al provocado por la llegada de la motorización.

Lo que estas dos revoluciones tienen en común es que están cambiando radicalmente las prácticas de los agricultores y, a veces, incluso su visión de su papel. Por lo tanto, los cambios motivan a los agricultores con espíritu pionero, pero están causando mucha ansiedad a la gran mayoría de sus colegas.

Las cuatro revoluciones agrícolas
Para hacer aún más complejo el período que estamos viviendo, el mundo agrícola se enfrenta a otras dos revoluciones. El primero implica la entrada de la agricultura en la economía de mercado. La retirada gradual pero continua de los poderes públicos de la gestión del mercado va de la mano de la variabilidad de los precios, aunque la tendencia general no sea desfavorable. La segunda revolución es comercial. Ahora, los agricultores tienen la responsabilidad de producir lo que demandan los mercados (local, nacional, regional, europeo y mundial), y no al revés, es decir, encontrar salidas para los productos. Los sectores agrícolas ahora están descubriendo qué es realmente un cliente y tienen que adoptar una mentalidad de tenedor a tenedor. Por tanto, la agricultura francesa tiene que adaptarse a cuatro revoluciones rápidas y simultáneas.

Además, estas revoluciones paralelas están muy interconectadas. La tecnología digital facilitará el registro de las prácticas de gestión ambiental agrícola, lo que permitirá una trazabilidad segura a lo largo de la cadena alimentaria. Esto generará la transparencia que exigen los consumidores para restablecer la confianza en la agricultura francesa. La transición a la agricultura de conservación (también conocida como gestión ambiental agrícola) también satisface las demandas de los ciudadanos y consumidores de alimentos más naturales. Se verá facilitado por la digitalización, aunque la revolución digital no impulsará la revolución de la agricultura de conservación, al contrario de lo que piensan quienes tienen una visión ultra-técnica de la evolución de la agricultura.

Este cambio a la gestión ambiental agrícola es un cambio profundo en el sistema técnico de producción agrícola. La nueva visión de la agricultura se podría resumir como un impulso para maximizar la producción de biomasa, en línea con las demandas de los ciudadanos-consumidores, minimizando la huella ambiental de las empresas agrícolas. Algunas personas incluso están considerando ir más allá y utilizar prácticas agrícolas para descarbonizar la economía o restaurar los entornos dañados. En este análisis nos centraremos únicamente en la dimensión técnica de la agricultura de conservación que, además de sus componentes técnicos y biológicos, está adquiriendo las características de un movimiento social más global que incorpora comunidades y consumidores.

Hay dos aspectos clave para minimizar el impacto ambiental de la agricultura: reducir el uso de recursos escasos en la medida de lo posible, al mismo tiempo que se limitan los vertidos de la agricultura al medio ambiente natural. En términos generales, esto significa consumir menos energía fósil y reducir el uso de insumos químicos (fertilizantes, fungicidas, insecticidas y herbicidas).

Un nuevo enfoque de la agricultura

Los agricultores buscarán aprovechar al máximo los procesos biológicos para ayudar a la producción y también intentarán maximizar el uso de la fotosíntesis. La gente suele hablar de agricultura ecológicamente intensiva, que busca mejorar y maximizar la efectividad de los procesos biológicos. Fundamentalmente, este nuevo enfoque se basa en la no mano de obra y la labranza reducida, asegurando la cobertura permanente del suelo, extendiendo las rotaciones de cultivos y por ende diversificando la producción, una reconexión cada vez mayor de la agricultura arable y ganadera, la búsqueda de las máximas interacciones entre las parcelas productivas y su entorno (setos, agroforestería), y en muchos casos ahora se presta menos atención al cultivo de variedades individuales que a las mezclas de variedades o combinaciones de cultivos. La reconexión de la agricultura arable y ganadera se realizará en la propia finca (agricultura convencional mixta) pero también a través de alianzas entre fincas complementarias. El valor se obtendrá del forraje producido por los agricultores entre dos cultivos comerciales cuando los ganaderos lo alimenten a sus rebaños, por ejemplo. Esto se conoce como integración cultivo-ganado más allá del nivel de finca. Se están realizando pruebas en las que los rebaños comen la hierba que crece entre las hileras de vides, por ejemplo, al igual que en las regiones de Champagne o Beauce los rebaños de ovejas vuelven a pastar en los campos después de la cosecha.

Asimismo, habrá mucho más interés que antes en el “cierre” total de los ciclos de elementos con el fin de limitar los impactos ambientales y optimizar la gestión económica de los negocios agrícolas. Esto se aplica a los ciclos del nitrógeno, carbono y fósforo. Este enfoque de economía circular allana el camino para asociaciones como los vínculos mencionados anteriormente entre el ganado y los agricultores, o una planta de biogás gestionada por un grupo agrícola. Tiene una dimensión colaborativa y vecinal, como en los tradicionales canjes de paja por estiércol.

Este nuevo enfoque de la agricultura claramente no es un regreso a la agricultura como la practicaban nuestros abuelos, incluso si incorpora una dimensión mucho más natural. Es una visión proactiva y esencialmente preventiva más que curativa. Desde la década de 1950, la atención se centró en el desarrollo de variedades y razas de alto rendimiento para las que hemos buscado proporcionar un entorno estable para que puedan expresar todo su potencial. Por ejemplo, los agricultores tratan de destruir a todos los agresores más allá de un cierto umbral de infestación (enfermedades, plagas, especies advenedizas). En la agricultura de conservación, la atención se centrará en cambio en mantener el equilibrio durante períodos de varios años y pensar cada vez más en términos de ecosistemas cultivados. Por ejemplo,

Dependiendo de cuán heterogéneo sea un campo, esta o aquella especie crecerá mejor dependiendo de las ubicaciones dentro de la parcela. Los ganaderos quizás busquen animales que sean un poco menos productivos pero menos sensibles a las variaciones ambientales, por ejemplo. Por lo tanto, los agricultores deberán desarrollar un enfoque mucho más sistémico de su profesión y sus prácticas, que tendrá cada vez más elementos agronómicos y zootécnicos.

Agricultura de precisión, digitalización y robótica
¿Cómo podrá esta revolución aprovechar los beneficios de la revolución digital?

Las nuevas tecnologías permitirán el uso de cada vez más sensores y facilitarán la transmisión en tiempo real de los datos que recopilan. Se instalará un número cada vez mayor de sensores autónomos fijos en los campos, incluidos los sensores de humedad y temperatura, y otros serán usados ​​por animales, incluidos podómetros y acelerómetros. Algunos incluso se colocarán dentro de los cuerpos de los animales, como termómetros ingeridos en el estómago del ganado y sondas vaginales. Veremos el desarrollo de sensores móviles integrados en máquinas y otros que miden los parámetros biofísicos de los cultivos en tiempo real, como los niveles de azúcar, el flujo de savia en los tallos y el déficit de humedad. Claramente, esto ayudará a que las intervenciones técnicas sean mucho más precisas. Pero al mismo tiempo, es un enfoque altamente técnico que busca lograr la optimización extrema y la racionalización de la agricultura «tradicional» en lugar de un movimiento hacia la agricultura de conservación natural y sistémica descrita anteriormente. Es un equilibrio difícil de lograr.

Se debe encontrar un equilibrio entre lo que a menudo se denomina agricultura de precisión (arable y ganadera), capaz de determinar de manera correctiva la escala de intervención correcta y limitada en el momento y lugar adecuados, y un enfoque preventivo y sistémico que permita a un ecosistema cultivado Producir sin necesidad de tratamientos curativos. La tecnología digital permitirá focalizar las intervenciones, pero también, a través del procesamiento de datos, pronosticar y anticipar, simular y salvaguardar. Por último, la robotización abre la perspectiva de mecanizar con precisión las tareas y, por tanto, desarrollar o remodelar prácticas no químicas; Piense en los robots de escarda.

Agricultura de precisión
¿Qué es entonces, en última instancia, la agricultura de precisión? Es la capacidad de decidir y realizar la mejor intervención técnica en el lugar adecuado en el momento óptimo. Hace que sea más fácil planificar con anticipación y actuar con precisión en términos de espacio, ya sea en relación con una parcela, un animal o un edificio. Significa realizar una intervención dirigida a un animal, proporcionándole exactamente lo que necesita, cuando lo necesita. También es una nueva oportunidad para considerar a los animales individualmente sobre la base de sus propias actuaciones y situaciones, en lugar de tomar decisiones a nivel de rebaño o manada. Este enfoque en el individuo más que en el grupo permite tener en cuenta la heterogeneidad. Y cuanto mayor sea la heterogeneidad, mayores serán las ganancias. Cuando esta forma de cría esté más desarrollada, por ejemplo, cambiará significativamente las prácticas en la cría de cerdos, donde la unidad de base es actualmente una piara de treinta cerdos de engorde. Este es potencialmente un verdadero cambio técnico que permite tanto un aumento de los rendimientos como una reducción de los insumos. Por ejemplo, los agricultores podrían modular automáticamente la dosis de control de malezas, riego y fertilizante dentro de una parcela según las condiciones del suelo, los rendimientos del año anterior y las mediciones del estado de la vegetación. Podrán ajustar automáticamente las porciones de alimento basándose en lecturas instantáneas de las actuaciones individuales de cada animal. También será posible ajustar instantáneamente los dispositivos de acuerdo con los cambios en el entorno en el que operan. los agricultores podrían modular automáticamente la dosis de control de malezas, riego y fertilizante dentro de una parcela en función de las condiciones del suelo, los rendimientos del año anterior y las mediciones del estado de la vegetación. Podrán ajustar automáticamente las porciones de alimento basándose en lecturas instantáneas de las actuaciones individuales de cada animal. También será posible ajustar instantáneamente los dispositivos de acuerdo con los cambios en el entorno en el que operan. los agricultores podrían modular automáticamente la dosis de control de malezas, riego y fertilizante dentro de una parcela en función de las condiciones del suelo, los rendimientos del año anterior y las mediciones del estado de la vegetación. Podrán ajustar automáticamente las porciones de alimento basándose en lecturas instantáneas de las actuaciones individuales de cada animal. También será posible ajustar instantáneamente los dispositivos de acuerdo con los cambios en el entorno en el que operan.

Por tanto, el resultado será una mayor eficiencia con mejores prestaciones técnicas, costes reducidos y un menor impacto medioambiental. Además, será posible rastrear y documentar automáticamente las intervenciones en el tiempo y el espacio. La agricultura de precisión es, en última instancia, solo un conjunto de técnicas complementarias específicas del sector. Probablemente iremos más allá de la optimización técnica de las prácticas actuales y crearemos palancas que tengan el potencial de cambiar todo el ecosistema agrícola. Gracias a una agricultura mesurada y, no lo olvidemos, más sistémica, seremos capaces de intensificar la agricultura de forma respetuosa con el medio ambiente.

Por lo tanto, las revoluciones de la agricultura digital y de conservación transformarán el panorama agrícola al cambiar las técnicas de producción, los métodos de supervisión y las habilidades necesarias para tener éxito. Como resultado, el papel del agricultor cambiará radicalmente. En el pasado, los agricultores necesitaban habilidades técnicas. Hace varios años empezaron a necesitar habilidades de gestión y ventas, y ahora se requieren habilidades estratégicas e interpersonales “gerenciales”. En otras palabras, los agricultores aún deben ser excelentes técnicos, pero también deben convertirse en buenos líderes empresariales. La llegada de la tecnología digital a la agricultura seguramente también generará la necesidad de nuevas habilidades, o al menos nuevos comportamientos y formas de pensar.

Estamos haciendo balance del alcance previsible de la próxima transformación y la necesidad crucial de que los agricultores adquieran nuevas habilidades no solo sino también a lo largo de la cadena de asesoramiento relacionada. Dada la emergencia climática, este cambio también deberá producirse a una velocidad sin precedentes.

La agricultura de conservación será una forma de agricultura que haga un mayor uso de las habilidades y los conocimientos y consuma menos insumos.

Leer más
Agricultura de precisión y sostenibilidad

Qué es la teledetección

Definiciones

La teledetección se refiere al proceso de recopilar información sobre un objeto, a distancia, sin tocar el objeto en sí. El método de detección remota más común que viene a la mente de la mayoría de las personas es la imagen fotográfica de un objeto tomada con una cámara. La teledetección se ha convertido en mucho más que mirar objetos con los ojos. Ahora incluye el uso de instrumentos, que pueden medir atributos sobre objetos que los ojos humanos sin ayuda no pueden ver o sentir.

Algunas otras definiciones de percepción remota son:

«La fotogrametría y la teledetección son el arte, la ciencia y la tecnología de obtener información confiable sobre los objetos físicos y el medio ambiente, mediante un proceso de registro, medición e interpretación de imágenes y representaciones digitales de patrones de energía derivados de sistemas de sensores sin contacto» (Colwell, 1997) .

«La teledetección puede definirse en términos generales como la recopilación de información sobre un objeto sin estar en contacto físico con el objeto. Las aeronaves y los satélites son las plataformas comunes desde las que se realizan las observaciones de teledetección. El término teledetección se limita a los métodos que emplean electromagnéticos la energía como medio para detectar y medir las características del objetivo ”(Sabins, 1978).

«La teledetección es el arte y la ciencia de obtener información a distancia, es decir, obtener información sobre objetos o fenómenos sin estar en contacto físico con ellos. La ciencia de la teledetección proporciona los instrumentos y la teoría para comprender cómo se pueden detectar objetos y fenómenos. El arte de la teledetección está en el desarrollo y uso de técnicas de análisis para generar información útil ”(Aronoff, 1995).

Historia

En 1858, un fotógrafo francés, Gaspaed Felix Tournachon, fue el primero en tomar fotografías aéreas desde un globo atado. Unos años más tarde, en 1861, las fotografías aéreas se convirtieron en una herramienta de inteligencia militar durante la guerra civil. También se tomaron fotografías aéreas de cámaras montadas en cometas (1858) y en palomas mensajeras (1903). En 1909 Wilber Wright voló el primer avión en tomar las primeras fotografías en vuelo. Las primeras fotografías aéreas utilizadas en el proceso de creación de mapas fueron presentadas en un artículo en 1913 por el Capitán Tardivo en una reunión de la Sociedad Internacional de Fotogrametría.

Las fotografías aéreas militares se utilizaron a gran escala durante la Primera Guerra Mundial. Los militares entrenaron a cientos de personas para procesar e interpretar fotografías de reconocimiento aéreo. Las unidades aéreas francesas revelaron 56.000 fotografías en cuatro días durante la ofensiva Meuse-Argonne en 1918 (Colwell, 1997). Después de la Primera Guerra Mundial y durante la década de 1930, las empresas comerciales de reconocimiento aéreo emplearon a muchos ex militares para procesar fotografías aéreas para producir mapas como mapas topográficos, mapas de gestión forestal y mapas de suelos.

La Segunda Guerra Mundial vio el desarrollo de películas de infrarrojos en color para el Ejército de los EE. UU. En 1942. Estas imágenes se utilizaron para detectar fuerzas enemigas y equipos que estaban camuflados. La mayoría de la inteligencia aliada reunida sobre el enemigo durante esta guerra fue el resultado directo del fotoreconocimiento aéreo.

El ejército de los Estados Unidos y otras agencias gubernamentales como la Administración Nacional de Aeronáutica y del Espacio (NASA) continuaron desarrollando el uso de la teledetección durante los años de la guerra fría. La década de 1960 también vio la expansión y el desarrollo de la teledetección terrestre desde el espacio. El primer satélite de reconocimiento fotográfico espacial militar, Corona, fue lanzado en 1960. Corona tomó fotografías de la Unión Soviética y sus aliados usando películas fotográficas. La película expuesta se transfirió luego a vehículos de recuperación no tripulados en el espacio. Los vehículos de recuperación luego desorbitaron y regresaron a la tierra en paracaídas con la película, que luego fue procesada y analizada en el laboratorio. La primera serie de satélites meteorológicos llamados Satélites de observación de infrarrojos de televisión (TIROS) comenzó a lanzarse en 1960. La NASA continuó recopilando imágenes para sus estudios de observación de la Tierra.

wpe2.jpg (19838 bytes) SR-71.jpg (151373 bytes)

Figura 1.1 Sitio de misiles cubanos 1962 Figura 1.2 SR-71

Fotografías aéreas tomadas desde aviones U-2 de gran altitud y RF101 de baja altitud, descubrieron instalaciones de misiles en Cuba como la que se muestra en la figura 1.1. Estas imágenes fueron televisadas al mundo durante la Crisis de los Misiles en Cuba en 1962. En 1964, la Fuerza Aérea de los Estados Unidos comenzó a volar el avión de reconocimiento SR-71 Blackbird que se muestra en la figura 1.2. El SR-71 vuela a velocidades superiores a Mach 3 o 2,000 millas por hora y en altitudes superiores a los 85,000 pies.

Durante la década de 1970 se lanzaron decenas de satélites estadounidenses de observación de la tierra y meteorología. También durante la década de 1970, las naves espaciales tripuladas, como la estación espacial Skylab, recopilaron imágenes de la tierra desde el espacio exterior. En 1972, el Landsat-1 que se muestra en la figura 1.3 con una resolución original de sólo 80 metros fue el primer satélite lanzado al espacio para la observación de recursos terrestres no militares. Landsat contenía sensores capaces de tomar imágenes digitales multiespectrales.

landsat.gif (29467 bytes)

Figura 1.3 Satélite Landsat

Los satélites de fotoreconocimiento militares de EE. UU. Se han mantenido en secreto y no están disponibles para el público en general. A partir de 1976, el ejército de Estados Unidos comenzó a desplegar satélites de alta resolución más sofisticados capaces de transmitir imágenes digitales a la Tierra. Se lanzaron ocho satélites Keyhole-11 entre 1976 y 1988. Se lanzaron tres satélites Keyhole-11B mejorados entre 1992 y 1996. Pueden producir imágenes con resoluciones estimadas de casi diez centímetros (cuatro pulgadas) (Vick et al, 1997).

Se han utilizado imágenes satelitales no militares para monitorear la degradación y contaminación del medio ambiente. Estas imágenes también se pueden utilizar para evaluar el daño de las inundaciones y los desastres naturales, ayudar a pronosticar el clima, ubicar reservas de minerales y petróleo, ubicar poblaciones de peces, monitorear las corrientes oceánicas, ayudar en el mapeo y planificación del uso de la tierra, producir mapas geológicos y monitorear pastos, recursos forestales y agrícolas.

Propiedades y conceptos fundamentales

El espectro electromagnético

Todos los objetos, incluidas las plantas y el suelo, emiten o reflejan energía en forma de radiación electromagnética. La radiación electromagnética viaja en ondas que se propagan por el espacio de forma similar a la que se muestra en la figura 1.4. Tres componentes principales de estas ondas son la frecuencia, la amplitud y la longitud de onda. La frecuencia es el número de crestas de ciclo que pasan por un punto durante un período de tiempo determinado. Un ciclo por segundo se conoce como un hercio. La amplitud es el nivel de energía de cada onda que mide la altura de cada pico de onda. La longitud de onda es la distancia desde la parte superior de un pico de onda hasta la parte superior del siguiente pico de onda

wave.gif (6514 bytes)

Figura 1.4 Radiación electromagnética

La fuente más común de radiación electromagnética con la que estamos familiarizados es el sol. El sol irradia energía que cubre todo el espectro de frecuencias electromagnéticas como se muestra en la figura 1.5.

Los sensores remotos actúan de manera similar al ojo humano. Son sensibles a imágenes y patrones de luz reflejada. Una diferencia importante entre el ojo humano y los sensores remotos es el rango de frecuencia del espectro electromagnético al que son sensibles.

El rango del espectro electromagnético varía desde longitudes de onda muy cortas de menos de diez billonésimas de metro conocidas como rayos gamma, hasta ondas de radio con longitudes de onda muy largas de varios cientos de metros. El espectro electromagnético se puede dividir en segmentos discretos de rangos de longitud de onda llamados bandas, también denominados a veces canal.

emspec.gif (6125 bytes)

Figura 1.5 Espectro electromagnético

Es el sol el que más a menudo proporciona la energía para iluminar objetos (figura 1.6). La energía radiante del sol golpea un objeto en el suelo y parte de esta energía que no se dispersa ni se absorbe se refleja de regreso al sensor remoto. Una parte de la energía del sol es absorbida por objetos en la superficie de la tierra y luego es emitida nuevamente a la atmósfera como energía térmica.

radiación.gif (8739 bytes)

Figura 1.6

Región visible

La porción de luz visible del espectro electromagnético varía de 0,4 micrómetros («µm») (longitud de onda más corta, frecuencia más alta) a 0,7 µm (longitud de onda más larga, frecuencia más baja). Este es el rango de frecuencia de la luz al que es sensible el ojo humano. Cada objeto refleja, absorbe y transmite energía electromagnética en la parte visible del espectro electromagnético y también en otras frecuencias no visibles. La energía electromagnética que atraviesa completamente un objeto se denomina transmitancia. Nuestros ojos reciben la luz visible reflejada por un objeto.

Los tres colores primarios reflejados por un objeto (figura 1.7) conocidos como primarios aditivos son las longitudes de onda azul, verde y rojo. Los colores primarios no pueden formarse mediante la combinación de otros colores primarios. Los colores intermedios se forman cuando una combinación de colores primarios se refleja en un objeto. Magenta es una combinación de rojo y azul reflejados, cian una combinación de azul y verde reflejados y amarillo una combinación de rojo y verde reflejados.

La película de color produce colores mediante el uso de capas de tintes que filtran varios colores. Los tres colores que absorben los colores primarios, conocidos como primarios sustractivos , son magenta, cian y amarillo. El magenta absorbe el verde y refleja el rojo y el azul, el cian absorbe el rojo y refleja el azul y el verde y el amarillo absorbe el azul y refleja el rojo y el verde. La absorción de todos los colores produce negro. Si no se absorbe ningún color, la película se vuelve blanca.

blue.gif (1820 bytes) green.gif (1886 bytes) red.gif (1843 bytes)

magenta.gif (2230 bytes) cyan.gif (2080 bytes) yellow.gif (2102 bytes)

black.gif (1777 bytes) white.gif (2053 bytes)

Figura 1.7

Región de infrarrojos

La región espectral infrarroja no visible se encuentra entre la luz visible y la porción de microondas del espectro electromagnético. La región infrarroja cubre un rango de longitud de onda de 0,7 µm a 14 µm. Esta amplia gama de longitudes de onda infrarrojas se subdivide en dos regiones infrarrojas más pequeñas. Cada una de estas regiones presenta características muy diferentes.

La región infrarroja más cercana a la luz visible contiene dos bandas más pequeñas etiquetadas como infrarrojo cercano e infrarrojo de onda corta con longitudes de onda que oscilan entre 0,7 µm y 1,1 µm y entre 1,1 µm y 3,0 µm respectivamente. Estas regiones infrarrojas exhiben muchas de las mismas características ópticas que la luz visible. El sol es la fuente principal de radiación infrarroja, que se refleja en un objeto. Las cámaras que se utilizan para capturar imágenes en el espectro de luz visible pueden capturar imágenes en la región del infrarrojo cercano mediante el uso de una película de infrarrojos especial.

La otra región infrarroja con longitudes de onda más largas que van desde 3,0 µm a 14,0 µm está compuesta por dos bandas más pequeñas etiquetadas como infrarrojo de onda media e infrarrojo de onda larga con longitudes de onda que van desde 3,0 µm a 5,0 µm y desde 5,0 µm a 14,0 µm respectivamente. Los objetos generan y emiten radiación infrarroja térmica, por lo que estos objetos se pueden detectar por la noche porque no dependen de la radiación infrarroja reflejada del sol. Los sensores remotos que operan en este rango de longitud de onda infrarroja miden la temperatura de un objeto.

Interacción entre plantas y radiación electromagnética

Estructura de la hoja

La estructura de una hoja se muestra en la Figura 1.8. La cutícula es una fina capa cerosa que cubre las células de la epidermis en la superficie de la hoja. Los pequeños derrames en la capa de células de la epidermis se llaman estomas. Los estomas están rodeados por células de guarda, que hacen que los estomas se abran o se cierren. Las celdas de protección regulan la evaporación del agua de la hoja y también controlan el intercambio de gases entre la hoja y la atmósfera.

La capa interior de la hoja está compuesta por dos regiones de tejido mesófilo. Aquí es donde ocurre la mayor parte de la fotosíntesis. El mesófilo en empalizada se encuentra justo debajo de la epidermis superior. Estas células son alargadas, alineadas en filas y contienen la mayoría de los cloroplastos de la hoja. Los cloroplastos de la mayoría de las plantas contienen pigmentos y dos tipos diferentes de clorofila. La clorofila a es la más abundante y es de color verde azulado. La clorofila b es de color verde amarillento y absorbe la luz y luego transfiere esa energía a la clorofila a. Las moléculas de pigmento dentro de los cloroplastos también absorben energía luminosa y transfieren la energía a la clorofila. El mesófilo esponjoso es el interior inferior de la hoja compuesto por células de forma irregular y sueltas. Estas células contienen cloroplastos y están rodeadas de espacios de aire.

leaf.gif (63606 bytes)

Figura 1.8 Sección transversal de una hoja de una planta típica

Respuesta espectral

La clorofila absorbe principalmente la luz en las longitudes de onda de violeta a azul y rojo. La luz verde no se absorbe fácilmente y se refleja, lo que le da a la hoja una apariencia de color verde. La estructura de la pared celular interna del mesófilo provoca una alta reflectancia de la radiación infrarroja cercana. La clorofila es transparente a la radiación infrarroja cercana. El fuerte aumento de la energía reflejada justo más allá de la región roja de la luz visible hacia la región del infrarrojo cercano se denomina borde rojo. La Figura 1.9 muestra este fuerte aumento de reflexión ubicado alrededor de la longitud de onda de 0,7 µm. La ubicación del borde rojo no es estática durante la vida de una hoja. A medida que la hoja madura, la clorofila absorberá longitudes de onda ligeramente más largas en la región roja visible. Este cambio mueve el borde rojo que se muestra en la figura 1.9 hacia la derecha y se conoce como desplazamiento al rojo (Campbell, 1996).

Los factores de estrés ambiental como la sequía, las enfermedades, la presión de las malezas, el daño por insectos y otros estresan o dañan las plantas. Este estrés provocará cambios fisiológicos en la planta. Las plantas estresadas tendrán una reflectancia espectral diferente a la de las plantas normales en la misma etapa de crecimiento. Un ejemplo de cambio fisiológico sería el cambio en el color de las hojas de las plantas debido a la clorosis. El color amarillo de la clorosis es causado por la descomposición de la clorofila. El verde reflejado disminuirá y el rojo reflejado aumentará. La correlación de las diferentes respuestas espectrales observadas con el equipo de detección remota con la condición real de las plantas es fundamental para la interpretación e identificación precisas de los daños y el estrés en los cultivos.

Figura 1.9

Tipos de sensores

La mayoría de los sensores remotos miden y registran la magnitud y frecuencia de la radiación reflejada de un objeto. Los datos del espectro de frecuencias registrados del objeto se comparan y hacen coincidir con las firmas del espectro de objetos conocidos, lo que permite la identificación y clasificación del objeto en el suelo.

La teledetección de aviones y satélites utiliza sensores de imágenes, que miden la energía reflejada de los objetos bajo vigilancia. Estos sensores de imágenes se dividen en dos categorías generales, sensores activos y sensores pasivos. Los sensores pasivos monitorean solo la luz solar natural reflejada o la energía electromagnética de un objeto. Los sensores pasivos constituyen la mayoría de los sensores que se utilizan en la actualidad. Los sensores de imagen activos proporcionan su propia luz o energía electromagnética, que se transmite al objeto y luego se refleja de regreso al sensor. Un ejemplo común de este tipo de sensor es el radar. La cubierta de nubes en el cielo a menudo puede impedir que los sensores pasivos reciban energía reflejada desde el suelo, pero los sistemas de radar pueden penetrar la cubierta de nubes.

La historia temprana de la teledetección consistió en imágenes fotográficas en película tomadas por cámaras. La luz reflejada que recibe la cámara expone la película al reaccionar con la emulsión química de la película para crear una imagen en formato analógico. Las imágenes producidas son fijas y no están sujetas a mucha manipulación a menos que se conviertan a un formato electrónico digital. Las imágenes digitales tienen ventajas sobre las imágenes de películas analógicas porque las computadoras pueden almacenar, procesar, mejorar, analizar y renderizar imágenes en una pantalla de computadora.

Las imágenes digitales son imágenes reducidas a números. La imagen se compone de números, que representan atributos de la imagen como el brillo, el color o la longitud de onda de la frecuencia de la energía radiada, y la ubicación de la posición de cada punto o elemento de la imagen. Los elementos de imagen de menor tamaño en una pantalla de computadora se denominan píxeles. Una imagen digital está formada por píxeles dispuestos en filas y columnas que se muestran en las figuras 1.6, 1.7, 1.8.

pixel.gif (950 bytes) scanlin.gif (1666 bytes)
Figura 1.10 Un solo píxel Figura 1.11 Una fila de píxeles representa una línea de exploración

img1bnd.gif (2810 bytes)

Figura 1.12 Las filas y columnas de píxeles representan una imagen

Resolución

Los sensores remotos miden diferencias y variaciones de objetos. Hay cuatro resoluciones principales que afectan la precisión y la utilidad de los sensores remotos.

La resolución espacial describe la capacidad de un sensor para identificar el detalle de tamaño más pequeño de un patrón en una imagen. La distancia entre patrones u objetos distinguibles en una imagen que se pueden separar entre sí a menudo se expresa en metros.

La resolución espectral es la sensibilidad de un sensor para responder a un rango de frecuencia específico. Los rangos de frecuencia cubiertos a menudo incluyen no solo luz visible, sino también luz no visible y radiación electromagnética. El rango discreto de longitudes de onda de frecuencia que un sensor puede detectar y medir se llama Banda. Las características del suelo, como el agua y la vegetación, se pueden identificar por las diferentes longitudes de onda reflejadas. El sensor utilizado debe poder detectar estas longitudes de onda para poder ver estas y otras características.

La resolución radiométrica a menudo se denomina contraste. Describe la capacidad del sensor para medir la intensidad de la señal o el brillo de los objetos. Cuanto más sensible es un sensor al brillo de un objeto en comparación con su entorno, más pequeño es el objeto que se puede detectar e identificar.

La resolución temporal es el período de tiempo transcurrido entre las imágenes tomadas del mismo objeto en el mismo lugar. Cuanto más frecuente sea el retorno de un sensor a una ubicación específica exacta, mayor será la resolución temporal. Varias observaciones a lo largo del tiempo revelan cambios y variaciones en el objeto que se observa. Para los sistemas de satélites, la resolución temporal se describe como el período de revisión, que se refiere al tiempo que tarda un satélite en regresar a la misma área en órbitas posteriores.

Procesamiento de imágenes

Una vez que se han adquirido los datos digitales sin procesar de la teledetección, se procesan en información utilizable. Las fotografías de películas analógicas se procesan químicamente en un cuarto oscuro, mientras que las imágenes digitales se procesan en una computadora. El procesamiento de datos digitales implica cambiar los datos para corregir ciertos tipos de distorsiones. Siempre que se modifiquen los datos para corregir un tipo de distorsión, existe la posibilidad de crear otro tipo de distorsión. Los cambios realizados en los datos de teledetección implican dos operaciones principales: preprocesamiento y posprocesamiento .

Preprocesamiento

Los pasos de preprocesamiento de una imagen de teledetección generalmente se realizan antes de la mejora, extracción y análisis del posprocesamiento de la información de la imagen. Normalmente, será el proveedor de datos quien preprocesará los datos de la imagen antes de la entrega de los datos al cliente o usuario. El preprocesamiento de datos de imágenes a menudo incluirá corrección radiométrica y corrección geométrica .

Se realizan correcciones radiométricas a los datos de la imagen digital sin procesar para corregir los valores de brillo del objeto en el suelo que se han distorsionado debido a la calibración del sensor o problemas de mal funcionamiento del sensor. La distorsión de las imágenes se debe a la dispersión de la energía de la luz electromagnética reflejada debido a una atmósfera en constante cambio. Ésta es una fuente de error de calibración del sensor.

Se realizan correcciones geométricas para corregir la inexactitud entre las coordenadas de ubicación de los elementos de la imagen en los datos de la imagen y las coordenadas de ubicación real en el suelo. Varios tipos de correcciones geométricas incluyen correcciones de sistema, precisión y terreno.

La corrección del sistema utiliza un punto de referencia geográfica para un elemento de píxel, como el proporcionado por el sistema de posicionamiento global. La precisión de la corrección a menudo varía según la precisión de la posición dada por el sistema de posicionamiento global. La inestabilidad del sistema de plataforma de la aeronave se muestra en la figura 1.13. La corrección de preprocesamiento elimina la distorsión del movimiento como se muestra en la figura 1.14.

toledo_small_raw.jpg (12229 bytes)

Figura 1.13 Datos brutos del sensor aéreo sin corregir.

toledo_synthetic_small.jpg (14879 bytes)

Figura 1.14 Datos preprocesados ​​corregidos para el movimiento de la aeronave.

La corrección de precisión utiliza puntos de control de tierra. Los puntos de control terrestre, que tienen ubicaciones geográficas precisas de longitud y latitud predeterminadas, se utilizan a menudo para medir el error de ubicación de los elementos de la imagen. Hay varios modelos matemáticos disponibles para estimar la posición real de cada elemento de la imagen en función de su distancia desde el punto de control del terreno.

La corrección del terreno es similar a la corrección de precisión, excepto que, además de la longitud y la latitud, se hace referencia a una tercera dimensión de elevación con el punto de control terrestre para corregir la distorsión inducida por el terreno. Este procedimiento también se conoce como orto-corregido u ortorrectificado. Por ejemplo, los edificios altos parecen inclinarse lejos del punto central de la figura 1.15, mientras que los edificios directamente debajo de la lente de la cámara (nadir) solo tienen sus techos visibles. La distorsión del relieve será mayor para los objetos más alejados del centro de la foto.

LongBeach.jpg (122278 bytes)

Figura 1.15 Ejemplo de terreno o desplazamiento de relieve.

Postprocesamiento

Las rutinas de posprocesamiento de imágenes digitales incluyen mejora de imágenes , clasificación de imágenes y detección de cambios . Estas rutinas de proceso computarizado mejoran la calidad de la escena de la imagen y ayudan en la interpretación de los datos.

Las técnicas de mejora de la imagen incluyen estiramiento del contraste, filtrado espacial y relación.

El estiramiento del contraste cambia la distribución y el rango de los números digitales asignados a cada píxel en una imagen. Esto se hace a menudo para acentuar detalles de la imagen que pueden ser difíciles de observar para el espectador humano sin ayuda.

El filtrado espacial implica el uso de algoritmos llamados filtros para enfatizar o restar importancia al brillo usando un cierto rango de números digitales sobre una imagen. Los filtros de paso alto mejoran el detalle del borde de la imagen. Los filtros de paso bajo suavizan una imagen y reducen el ruido de la imagen.

Las razones se calculan tomando los números digitales de una banda de frecuencia y dividiéndolos por los valores de otra banda. El rango de proporción se puede redistribuir para resaltar ciertas características de la imagen.

La clasificación de imágenes agrupa los píxeles en clases o categorías. Este proceso de clasificación de imágenes puede no estar supervisado o supervisado.

La clasificación de imágenes sin supervisión es un sistema informático que asigna píxeles a grupos estadísticamente separables en función de los valores numéricos digitales de píxeles de varias bandas espectrales. A los patrones de conglomerados resultantes se les pueden asignar diferentes colores o símbolos para visualizarlos y producir un mapa de conglomerados. El mapa resultante puede no corresponder necesariamente a las características del terreno que le interesan al usuario.

La clasificación supervisada es un procedimiento más completo que utiliza un analista de imágenes humanas experimentado para reconocer y agrupar píxeles en clases y categorías de interés para el usuario. El analista selecciona varias muestras de patrones de píxeles homogéneos en la imagen denominados sitios de entrenamiento. Los analistas identifican estos sitios visitando realmente la ubicación del terreno y haciendo observaciones de campo (verificación del terreno) o utilizando experiencia y habilidades pasadas. Los píxeles restantes fuera de los sitios de formación se hacen coincidir con los sitios de formación utilizando técnicas de procesamiento estadístico.

La detección de cambios es un proceso en el que dos imágenes en la misma ubicación tomadas en fechas diferentes se comparan entre sí para medir cualquier cambio en la forma física, ubicación o propiedades espectrales. Luego se produce una tercera imagen que muestra solo los cambios entre la primera y la segunda imagen. La detección de cambios se presta al análisis de la automatización informática. Los valores numéricos digitales de píxeles se comparan píxel por píxel dentro de cada banda de frecuencia. El análisis por computadora es más útil cuando se combina con la experiencia y el conocimiento del analista humano para interpretar los cambios de imagen.

Leer más