Agricultura de precisión y sostenibilidad

Drones observación de fauna y de hábitats desde el aire

En el trabajo de conservación y manejo de las especies de fauna y flora silvestre se requiere el monitoreo constante para conocer el estatus y tendencia de las poblaciones, así como las posibles causas que pudieran afectarlas como cambios en el hábitat debido a la deforestación y fragmentación, agricultura y ganadería, introducción de especies exóticas y cacería furtiva.

Como parte de esos programas de monitoreo, se aplican diversos métodos de muestreo en campo entre los que destacan: el conteo directo de animales en líneas de recorrido, la captura-recaptura en diferentes tipos de trampas, redes y actualmente en cámaras-trampa; además, ha sido tradicional el empleo de métodos que involucran en rastreo para contar huellas, excrementos, madrigueras y cualquier otra evidencia de la presencia de las especies de interés. Otros métodos incluyen el seguimiento de animales equipados con radio-telemetría, la grabación de sonidos y vocalizaciones, e incluso los marcadores moleculares para la identificación de especies e incluso individuos. La aplicación de cualquiera de estos métodos implica un intenso trabajo en campo lo cual involucra desde la compra del equipo básico, hasta los gastos de viaje del personal en los muestreos. En consecuencia, los costos pueden ser muy variables pero en general son altos dependiendo, entre otros factores, de la superficie del área de estudio (ANP, UMA u otro), las especies involucradas, el personal disponible y el método seleccionado.

Uno de los métodos empleados comúnmente para numerosas especies de fauna alrededor del mundo, es el conteo directo de los animales desde el aire, ya sea en avionetas o helicópteros. Incluso para algunas especies, es posible su identificación desde fotos aéreas y satelitales. Por ejemplo, en las sabanas africanas el conteo de antílopes, elefantes y otras especies de talla mediana a grande, se realiza año tras año en varios Parques Nacionales como el Serengueti. Esta metodología se emplea en muchos lugares del mundo. En México se han aplicado estos métodos para ciertas especies como el venado cola blanca, venado bura, berrendo y borrego cimarrón, principalmente en los matorrales del norte donde es posible la aplicación de esta tecnología. Sin embargo, en todos los casos los costos y riesgos de realizar esos vuelos, son muy altos tanto en términos económicos como en costos humanos donde ha habido lamentables accidentes con pérdidas de vidas humanas al realizar esas labores. Además, el muestreo aéreo ha servido no solo para monitorear algunas especies de fauna, sino también para obtener información del hábitat a una resolución y detalle muy finos, lo cual permite en ciertos casos documentar los cambios en la extensión y calidad de los diferentes tipos de hábitats para la fauna. Esta información junto con la obtenida de otras fuentes, permite el empleo de sistemas de información geográfica para evaluar la calidad del hábitat.

¿Para qué se están aplicando los drones?

En los últimos 15 años ha ido en aumento el empleo de cuadri-helicópteros y aviones no tripulados, también conocidos como drones, para el monitoreo de fauna silvestre y del hábitat. Si bien en sus orígenes los drones fueron desarrollados y empleados para fines militares, actualmente se utilizan para muchas otras tareas y objetivos como por ejemplo: la realización de mapas de alta resolución; en la agricultura, para el control de incendios; para conocer el estado atmosférico, también para la evaluación del impacto de obras y planificación urbanística, para vigilancia, entre algunos. A medida que mejora la tecnología y bajan los costos de los drones, diferentes organizaciones, instituciones y universidades en el mundo han ido implementado y desarrollando laboratorios y programas para la evaluación de esta tecnología. Si bien los drones se encuentran en este momento en la “infancia” de su desarrollo, existen datos publicados, incluso en revistas científicas de gran nivel internacional, acerca de las ventajas, limitaciones y necesidades de desarrollo e investigación para la aplicación de esta tecnología.

En el caso del monitoreo biológico, los drones se están empleando para observar y cuantificar desde el aire diversas especies de fauna y flora, así como para la descripción del paisaje y las actividades humanas que los impactan. Por ejemplo, algunas de las especies para las que se están aplicando son: cocodrilos, manatíes, delfines, ballenas, patos, gansos, canguros, elefantes, rinocerontes y otros. Incluso se está aplicando esta tecnología para identificar desde el aire nidos y camas en los árboles elaboradas por los orangutanes para pernoctar; también se han empleado para detectar ciertos tipos de madrigueras o montículos que hacen varias especies de roedores. Los drones también se están aplicando para conocer y documentar algunos aspectos del hábitat a una resolución y detalle particularmente interesantes. Con la ventaja de hacerlo en diferentes ocasiones del año lo cual tiene mucha ventaja respecto a información satelital y de otro tipo la cual puede llegar a ser cara, o bien no estar a la resolución y en las temporadas que se desean. Asimismo, los drones se están utilizando para conocer los sitios de forrajeo del ganado el cual en muchos casos invade el hábitat y compite con las especies nativas; e incluso se están empleando para detectar cacería furtiva.

¿Qué es un dron?

Básicamente los drones, también conocidos como vehículos aéreos no tripulados, son aeronaves que vuela sin tripulación. En comparación a las avionetas con motor, los drones son muy pequeños con tamaños y pesos que varían dependiendo de los diferentes modelos, vuelan a alturas muy bajas (menos de 1 km), son controlados desde tierra por una o dos personas empleando equipos receptores, aunque también hay variaciones que vuelan con piloto automático, y habitualmente están equipados con equipo para la toma de panorámicas y video el cual puede ser almacenado y/o transmitido para su observación en tierra. Por supuesto, otras de las características importantes de los drones es que si tienen algún fallo y caen a tierra, lo único lesionado es el dron y equipo, pero no las personas. Los más conocidos por la gente en general, son los drones tipo helicópteros entre los que destacan los que tienen cuatro motores. Sin embargo, también se les llama dron a los aviones de radiocontrol. Ambos modelos tienen ventajas y desventajas dependiendo de los objetivos para los cuales quieren ser empleados. En biología, los drones están siendo empleados para el monitoreo de especies, hábitats y otras tareas.

¿Cómo funcionan los drones y qué tan accesibles son?

Los drones o vehículo aéreo no tripulado (VANT) son aeronaves que vuelan sin tripulación. Un VANT se define como un vehículo sin tripulación reutilizable, capaz de mantener un nivel de vuelo controlado y sostenido, y propulsado por un motor. Los drones cada vez se usan más en investigaciones de carácter ecológico, en particular para aproximarse a la fauna sensible en zonas poco accesibles o para especies animales raras de difícil detección/observación por métodos comunes. Actualmente, existe una gran variedad de drones comerciales que proveen la oportunidad a los investigadores de mejorar el monitoreo de poblaciones de fauna silvestre. En particular el modelo Scout X4 tiene las siguientes características que lo hacen atractivo para ser empleado en el estudio de animales como los venados: de acuerdo con los requerimientos de vuelo puede programar los movimientos horizontales, mediante una pantalla táctil móvil puede establecer el punto de despegue y destino. La aeronave puede regresar al punto de partida original, pasando por los puntos marcados en su trayectoria. Monitoreo de telemetría en tiempo real y soporte iPad con energía de respaldo compatible con tablets y otros. Tren de aterrizaje retráctil permite una buena portabilidad. Motores de alto rendimiento, aumento de estabilidad de la aeronave y simplificación de mantenimiento. Visualización de la capacidad de la batería y tiempo de vuelo de hasta 25 minutos a distancias entre 1.5 y 2 km.

¿Cuáles son las limitaciones principales de los drones?

Si los drones sustituirán o complementarán otros métodos para monitorear la biodiversidad, es un aspecto que todavía no puede todavía tener una respuesta precisa. Entre las limitaciones principales, es que los drones más adecuados para ser empleados en monitoreos no son baratos, aunque hay drones tipo helicópteros de venta comercial. Además, el vuelo de drones requiere de entrenamiento y equipo lo cual al inicio no es ni sencillo ni barato. Sin embargo, estas mismas limitantes existieron en su momento cuando, por ejemplo, hace 50 años o más se empezó emplear la radio-telemetría para el seguimiento de animales; o hace menos de 20 años se inició el foto-trampeo para obtener información de especies difíciles de observar directamente en campo. En ambos casos, la mejora tecnológica y los precios cada vez más bajos y accesibles, han motivado a que un mayor número de personas e instituciones empleen estas tecnologías para la obtención de información biológica de las especies de interés. Los drones podrían seguir la misma historia como lo demuestran diferentes laboratorios donde se desarrollan diversos modelos, con mejor tecnología y reducción de costos.

Por supuesto, similar a todos los métodos, el empleo de drones no es la panacea ni se pretende que sea útil para todas las especies y tipos de hábitats. Su empleo dependerá de las condiciones para maximizar la información que se pueda obtener en los vuelos, a costos que puedan ser accesibles en los diferentes proyectos. Es decir, por el momento el empleo de los drones no es realista como método cotidiano, por ejemplo, para el monitoreo en UMAs extensivas y ANPs de gran tamaño. No obstante, no se debe descartar en el mediano plazo se empiece a utilizar con mayor frecuencia en estos lugares. Por supuesto, la regularización y delimitación de los vuelos con drones es materia importante para no interferir con otras actividades ni causar posibles accidentes. Esto es particularmente cierto con los drones comerciales si se emplean en zonas urbanas o cerca de instalaciones restringidas. Sin embargo, la aplicación de drones en áreas abiertas y extensas donde habitan las especies de fauna de interés, es menos riesgoso.

¿Cuál es el futuro de los drones?

De acuerdo a la experiencia de varios especialistas en el empleo de esta tecnología, en los siguientes años veremos, o esperamos los siguientes avances: 1) aumento en la duración del vuelo debido a la mejora en los sistemas de poder basados en baterías y celdas solares; 2) considerando el acelerado proceso de miniaturización en los componentes electrónicos, cada vez se podrán ir implementando mejores sensores en los drones, como por ejemplo video-cámaras de alta resolución y capacidad de almacenaje, así como otro tipo de cámaras como las termales para detectar animales no fáciles de observar directamente; 3) los drones serán cada vez más sencillos de manejar; 4) el análisis de la información obtenida con los drones, se analizará cada vez con mayor frecuencia, empleando equipo automatizado lo cual facilitará y reducirá el tiempo; 5) los drones permitirán mejores realizar mejores mapas detallando información en tiempo real; 6) los drones se irán acoplando a otras tecnologías, como por ejemplo la radio-telemetría, para mejorar la captura de información.

Leer más
Agricultura de precisión y sostenibilidad

drones-su-aplicación-para-monitoreo-de-cultivos-y-contar-el-ganado

Parecen de ciencia ficción, pero hoy son realidad, sus aplicaciones son muchísimas y creen que con el tiempo serán cada vez más. Así es el caso de una empresa que expuso en Expoagro 2015 un equipo de última tecnología que puede manejarse por control remoto.

La idea es que permita acortar los tiempos de monitoreo. Un drone equipado con GPS y una cámara especial, podrá viajar y recorrer un lote y enviar inmediatamente a su dueño toda la información sobre su cultivo.

Los drones o vehículos aéreos no tripulados (UAV) se llevaron todas las miradas en su primera demostración, debido a su capacidad para monitorear, evaluar y controlar los cultivos agrícolas de una forma más rápida y eficiente que las prácticas actuales.

Estos equipos se encuentran en pleno auge en el mundo y también en Argentina. Para la agricultura, los drones son los nuevos “chiches”. El productor puede contratar el servicio para ver el estado de los cultivos, relevar ataques de insectos, contar en minutos cuántas vacas tiene en un lote y hasta relevar una superficie anegada con agua para tomar decisiones de manejo.

El proceso consiste en dos instancias, primero el drone realiza un recorrido sobre el lote en cuestión y luego con un software especialmente diseñado evalúan el estado de los cultivos, realizan mapas, cálculos de volúmenes y curvas de nivel, entre otras funciones.

Estos equipos dan mucha información, pero luego habrá que saber que hacer con ello. En el país ya se encuentran empresas que brindan el servicio, pero también se pueden adquirir los equipos en el país.

El peso, la estabilidad y el equipamiento que se quiera tener, determina el costo de los equipos que pueden variar desde 300 hasta 70.000 dólares. Uno de los factores que define el precio es la cantidad de motores que posee. “Cuántos más motores posea mayor será la estabilidad que se logre y, por lo tanto, mejores imágenes se obtendrán”.

Ahora muchos de los cursos de agricultura de precisión dictados por entidades rurales incluyen este tema y demostraciones en vivo de estos equipos voladores no tripulados.

No hay que dejar de tener en cuenta que este tipo de equipos también son un riesgo en cuanto a su tamaño y posibilidad de introducirse en privados. En Estados Unidos la FAA (Federal Aviation Administration) Administración Federal de Aviación formó la UAS (Umanned Aircraft Systems) Sistemas Aéreos no Tripulados, en el año 2012, la cual se encarga de controlar este tipo de equipos estableciendo por ejemlo que no pueden volar a menos de 400 pies (122 metros) de altura de un área privada.

Ademas la agencia quien hace poco tiempo le otorgó a la CNN el permiso especial para utilizar los drones en la cobertura de noticias.

En el país del norte ya es importante la contra de los aerofumigadores quienes creen que podrán perder su trabajo si continúan expandiéndose las habilidades de los UAV, mientras a nuestro país cada vez se ira imponiendo cada vez más el uso de esta tecnología la polémica ya esta instalada entre los vanguardistas.

Leer más
Agricultura de precisión y sostenibilidad

Drones y tecnología punta la salvación para una ‘agricultura a distancia’

Los productores de alimentos tienen que seguir trabajando para asegurar el abastecimiento.Los productores de alimentos siguen trabajando para asegurar el abastecimiento.Paintec
En estos tiempos de quedarse en casa, a algunos sectores se les ha calificado como esenciales: sanitarios, seguridad, abastecimiento, limpiezas… todas esas profesiones detrás de nuestras necesidades básicas. Mientras crecen el teletrabajo -para quien puede-, los despidos y los ERTE, hay un sector que tiene que seguir al pie del cañón: la agricultura no echa el cierre, ya que la labor de los agricultores resulta fundamental para asegurar el abastecimiento de alimentos.

Pero los trabajadores del sector primario -agricultores, ganaderos, pescadores…- quieren también estar seguros ante la situación sanitaria, y por supuesto extremar las medidas de higiene y distanciamiento social.

Web para promocionar la venta a domiciliode productos de pequeños productores
La Consejería de Agricultura lanza un proyecto piloto para promocionar la venta a domicilio de los pequeños productores
El miedo a exponerse es real y la única manera de evitarlo es quedándose en casa, pero ¿cómo pueden minimizar los traslados quienes se dedican a una actividad tan esencial como la producción de fruta, verdura o cereal?

Las innovaciones tecnológicas y la agricultura de precisión se han convertido en la mejor solución para que los agricultores controlen sus cultivos a distancia.

Los agricultores pueden conocer todo lo que pasa en sus tierras desde el móvil o el ordenador a tiempo real, sin necesidad de desplazarse hasta sus explotaciones y reduciendo así su exposición.

Esta es la propuesta de Paintec, una empresa fundada hace un par de años en Ejea de los Caballeros (Zaragoza) que propone una plataforma integral de gestión agrícola basada en datos que provienen de drones, sensores y satélites. En definitiva, “una app con la que llevar el campo en el bolsillo y observar todos los cambios que se producen en él”, afirman desde la empresa.

Crece el interés por las tecnologías en el sector agrícola
El ministro de Agricultura, Pesca y Alimentación, Luis Planas, que ha comparecido en rueda de prensa junto a la portavoz del Gobierno, ha explicado el Real Decreto aprobado en el Consejo de Ministros ordinario celebrado esta mañana por el que se permite la contratación de mano de obra – alrededor de 75.000 personas – para la campaña de producción agrícola.
La reducción de módulos del IRPF beneficiará a productores de frutales y otras producciones agrícolas y ganaderas
Desde el pasado 15 de marzo, el número de visitas a la tecnología de esta empresa se ha disparado un 24%. La herramienta nació con el objetivo de “mejorar la productividad y eficiencia de un sector en el que tan solo el 7,1% de los agricultores usan de manera regular las nuevas tecnologías”, según una encuesta puesta en marcha por la propia empresa.

El escenario que se imaginaron sus creadores, claro, no fue el que vivimos, pero lo cierto es que la plataforma puede ser un recurso muy útil en la situación actual: “Permite minimizar los desplazamientos a las parcelas para hacer el seguimiento de los cultivos a pie. Aunque estos traslados están permitidos, cuanto menos se hagan, menor riesgo para los productores”, señala José Manuel Ruiz, cofundador de Paintec junto a su compañero Cristian Aldaz.

Desde el aire, los drones pilotados y los satélites generan imágenes espaciales que la herramienta procesa para ofrecer al agricultor toda la información que necesita, como por ejemplo, para detectar las malas hierbas. Todo ello reduciendo al máximo los desplazamientos.

¿Qué es la agricultura de precisión?
Frente a la agricultura tradicional, la conocida como agricultura de precisión permite reducir costes, utilizar la cantidad precisa de recursos y minimizar el impacto de su cultivo sobre el medioambiente. Colocados en la tierra, los sensores miden parámetros como la profundidad del suelo, su salinidad, textura y capacidad de retención de agua.

Según esta empresa, quienes utilizan sus servicios han conseguido “un ahorro de aproximadamente el 15% en gastos de insumo, mientras que su productividad ha aumentado un 5%”.

Los sensores miden parámetros como la profundidad del suelo, su salinidad, textura…Los sensores miden parámetros como la profundidad del suelo, su salinidad, textura…Paintec
La huerta a golpe de clic
Con la plataforma los agricultores pueden aumentar la producción de sus explotaciones y ahorrar en recursos tan preciados como el agua desde su ordenador, aunque “pronto podrán hacerlo también desde sus propios smartphones”, añade Ruiz.

Su manejo es muy sencillo y está basada en un modelo de negocio ‘freemium’ en el que la mayoría de los servicios son gratuitos, como la digitalización, monitorización por satélite e información agroclimática asociada a la parcela.

A3 Paintec ofrece también otros servicios más avanzados y de pago, como el cálculo de necesidades hídricas, la creación de mapas de prescripción de abonado, siembra y estimación de producción o la creación de cuadernos de campo digitales.

Además, desde la propia herramienta el agricultor podrá adquirir dispositivos como sondas, estaciones o sensores para la maquinaria, así como contratar vuelos con dron.

Leer más
Agricultura de precisión y sostenibilidad

TOPOGRAFÍA CON DRONES CAMBIANDO TRADICIONES

Los drones están transformando los métodos tradicionales de la topografía. La topografía con drones crece altos niveles cada día.

Muchas empresas han comenzado negocios de agricultura de precisión, topografía y fotogrametría con drones, recolectando imágenes aéreas y uniéndolas para crear mapas aéreos y modelos 3D.

En UTW hablamos continuamente sobre agricultura de precisión con drones, pero también somos especialistas en trabajos de topografía y fotogrametría.

Con la reciente aparición de drones profesionales como herramienta para capturar imágenes de elevaciones, volando a menor altura: de 7 a 125 metros, y con una mayor resolución, el mundo de la topografía tradicional se está enfrentando a una transformación tecnológica. Y no es sólo topografía, se ha convertido en topografía con drones.

La creación de mapas topográficos es un hábito para muchos topógrafos, profesionales de la construcción e ingenieros. Casi cualquier diseño de proyecto requiere una encuesta topográfica para que el gerente de dicho proyecto sepa cuáles son las características del terreno y posteriormente pasar a diseñarlo correctamente.

Con la ayuda de drones se pueden conseguir imágenes de gran calidad, que una vez procesadas mediante un software fotogramétrico consiguen representar modelos 3D de alta precisión. Si bien los drones no eliminarán la necesidad de topógrafos altamente capacitados, pemitirán un proceso significativamente más eficiente para capturar datos.

La tecnología de drones se está convirtiendo en un elemento común de cualquier topógrafo. Gracias a ello, conseguimos la captura de mapas detallados de terenos específicos, incluidos los contornos de dicho terreno y las características existentes de la superficie de la tierra. El tiempo también se reduce considerablemente , sumado a la reducción del coste de los métodos tradicionales. Gracias a la topografía con drones podemos celerar procesos y reducir costes.

EL USO DE DRONES ESTÁ AHORA AL ALCANCE DE TODOS
Cada país cuenta con unas normas específicas a la hora de conseguir el certificado de piloto de drones y su gobierno regula las superficies donde estos drones pueden volar o realizar trabajos profesionales.

Topografía con drones cambiando tradiciones

Sin duda, actualmente es más sencillo conseguir un certificado de piloto de UAVs que en el pasado. Son muchas las academias que proporcionan esta certificación, al igual que nuevos másteres siguen apareciendo para cubrir esta demanda.

Este hecho, combinado con la disponibilidad de vehículos aéreos no tripulados de grado comercial cada vez más asequibles y fáciles de operar, significa que ahora podemos completar un levantamiento topográfico en unas horas y tener los datos procesados ​​en nuestras manos, listos para su análisis en un periodo corto de tiempo.

Los datos de drones ya se están utilizando en muchos proyectos de desarrollo de tierras, desde las primeras etapas de planificación y diseño de subdivisiones de tierra, hasta el asesoramiento previo a la construcción, el seguimiento del progreso y el levantamiento final “tal como está construido”.

Ventajas e inconvenientes del uso de drones en topografía

El uso de drones en trabajos profesionales de topografía es relativamente nuevo.

Existen diversas ventajas que facilitan y reducen el coste de la topografía gracias al uso de drones. Desafortunadamente, también existen diversos inconvenientes puesto que es una tecnología bastante nueva y las regulaciones en muchas ocasiones dificultan los trabajos.

VENTAJAS DE LA REALIZACIÓN DE TOPOGRAFÍA CON DRONES
Disminuye el tiempo de realización de las tareas.
Reducción del coste.
Posibilidad de examinar grandes zonas.
Se llega a zonas de difícil acceso.
Se evitan riesgos personales.
Aporta información gráfica y por lo tanto más aproximada a la realidad.
Aporta un mayor número de puntos muy necesario para hacer planimetría.
Reducción en el tiempo de procesado y entregas (antes un topógrafo podría tardar 1 mes lo que ahora se hace en un día).
INCONVENIENTES DE LA REALIZACIÓN DE TOPOGRAFÍA CON DRONES
a) La distancia de vuelo es limitada según la regulación de vuelo en España.

b) La altura máxima a la que puede llegar un dron también es limitada (120m).

c) Las baterías permiten un tiempo limitado de vuelo, aunque en la actualidad se están investigando diferentes opciones para que sean más duraderas.

Gracias a los drones, la topografía es una profesión en auge ya que permite una reducción de costes y llegar a zonas que de otra forma un topógrafo no podría alcanzar debido a la dificultad o peligro.

También aceleran los periodos de entrega, eficacia y calidad debido a los nuevos sistemas que procesan los datos de los drones de forma efcaz, deligente y diámica.

Sin duda, la topografía con drones es un avanze en esta disciplina y seguirá creciendo con los años debido a la gran mejora que suponen y a la efecividad y profesionalidad que ofrecen.

Para poder hacer vuelos más extendidos y de larga duración habrá que esperar a que las baterías duren más tiempo. Esto junto con las regulaciones del vuelo de drones en España es una de las desventajas del uso de drones de forma profesional y esperamos que con el paso del tiempo se vayan mejorando.

Leer más
Agricultura de precisión y sostenibilidad

¿Cuáles son los beneficios de adoptar la agricultura de precisión

Echemos un vistazo más de cerca a los beneficios de la agricultura de precisión:

Operaciones rentables
El presupuesto y la contabilidad no siempre son los fuertes de un agricultor. Después de todo, prefieres estar en tierra. Pero cualquier cosa que facilite la gestión de los costes y la reducción de los gastos tiene que ser un beneficio. Si se usa bien, la tecnología agtech de precisión tiene el potencial de tener un gran impacto en sus resultados finales. Debido a que el uso de recursos como fertilizantes, productos químicos o pesticidas es mucho más específico, significa mucho menos desperdicio que el enfoque alternativo de fumigación general. Con una mayor claridad sobre la cantidad de cada recurso que se requiere, tiene una mejor indicación del gasto proyectado y puede presupuestar en consecuencia.

Mayores rendimientos
No es sorprendente que las prácticas de cultivo mejoradas y las condiciones optimizadas conduzcan a un mayor rendimiento. Las herramientas de agricultura de precisión le brindan la capacidad de proporcionar a los cultivos exactamente lo que necesitan, exactamente lo que necesitan. Tomemos, por ejemplo, la aplicación de fertilizantes. La tecnología de agricultura de precisión medirá y tendrá en cuenta las variaciones del suelo y luego adaptará la aplicación de fertilizantes en consecuencia. Una herramienta de mapeo de biomasa como DecipherAg también le permite crear planes de cultivo y nutrición hiperlocalizados que abordan con precisión las variabilidades y, por lo tanto, aumentan la probabilidad de que su cultivo produzca un rendimiento excelente.

Producción de mejor calidad
Los usuarios de la agricultura de precisión también tienen más probabilidades de ver productos de mejor calidad en cada rendimiento. Mediante un control más preciso del suelo, el riego y la labranza en franjas, los cultivos tienden a prosperar. Con acceso a información en tiempo real, es más fácil detectar problemas que podrían afectar su producción y, por lo tanto, tomar medidas rápidamente para realizar los ajustes necesarios.

Mayor rentabilidad
Combine los puntos uno y dos, y mantendrá feliz al gerente del banco. Si bien la agricultura sigue estando a merced de la volatilidad climática, los cambios del mercado y los precios de los productos básicos, cuantas más variables pueda eliminar de la ecuación, mejor. Eliminar las conjeturas de los cultivos con la ayuda de la tecnología solo puede aumentar sus posibilidades de una temporada exitosa.

Reducción del daño ambiental
La aplicación reducida y más precisa de los recursos también resulta en un impacto ambiental menos dañino. Los estudios han sugerido que las prácticas de agricultura de precisión están contribuyendo positivamente a la reducción de gases de efecto invernadero. Una mejor gestión de los nutrientes y el riego también reduce drásticamente los desechos innecesarios, mientras que una mejor gestión del suelo a largo plazo puede significar que la necesidad de utilizar productos químicos puede reducirse con el tiempo.

Toma de decisiones más informada
El conocimiento y la intuición pueden llevarlo tan lejos, pero los datos no mienten. La información que los agricultores pueden obtener de su conjunto de herramientas agtech elimina las conjeturas de las operaciones, como la rotación de cultivos, los tiempos de siembra, la cosecha y el manejo del suelo. Las plataformas de software fáciles de usar visualizan los datos, lo que facilita obtener una imagen clara del rendimiento de la granja, identificar tendencias y detectar variaciones. Con esta información al alcance de su mano, está mejor posicionado para tomar decisiones más informadas sobre lo que sucede tanto en la granja como en la oficina. Los agricultores que aprovechan la información de los agrónomos o asesores también pueden compartir fácilmente estos datos, sin importar dónde se encuentren. La toma de decisiones no solo es más inteligente, también es más rápida.

La demanda de alimentos en todo el mundo solo está aumentando. Tiene sentido que los productores aprovechen las herramientas que los hacen más eficientes y productivos. DecipherAg es una herramienta que brinda a los productores los datos y el conocimiento que necesitan para optimizar realmente sus operaciones agrícolas. Obtenga más información y regístrese para obtener una prueba gratuita para verlo en acción usted mismo aquí: https://www.decipher.com.au/decipherag/

Decipher está transformando la forma en que la industria agrícola gestiona la nutrición

Leer más
Agricultura de precisión y sostenibilidad

Los drones definen el futuro del control de malezas

Los mapas de prescripción son imprescindibles para aplicaciones de dosis variables. Y si el mapeo se torna más accesible en términos económicos con el uso de drones, su difusión será masiva.

Jorge Freites 80x80Los_drones_definen_el_futuro_del_control_de_malezas02Por Jorge Freites
El costo total de la lucha contra las malezas resistentes en Argentina se estima en U$S 1.300 millones anuales, según la compañía ADAMA. En el agro nacional ya se contabilizan 21 biotipos resistentes de 14 especies de malezas (9 gramíneas y 5 latifoliadas). El problema se agrava porque últimamente aparecieron biotipos resistentes a dos principios activos y modos de acción: glifosato y graminicidas FOP.

La lucha contra las malezas resistentes debe realizarse con herramientas ajustadas al desafío que se enfrenta. Una de ellas, combinada con las prácticas agronómicas, es la utilización de drones.

Costos del mapeo

La aplicación de herbicidas transita la era de las dosis variables. Son efectuadas por pulverizadoras que trabajan asistidas por mapas de prescripción. Para elaborarlos, la aparición de los drones y su empleo masivo será determinante. Ya se comercializan drones con el software específico para hacer los mapeos.

De ahora en más, el costo comparativo entre aplicaciones con mapas de prescripción y las aplicaciones tradicionales será el factor decisivo. A medida que los sistemas de mapeo mediante drones se vuelvan más accesibles económicamente, su uso se difundirá ampliamente. Como ya publicó MaquiNAC, un estudio del Instituto de Ingeniería Rural (IIR) del INTA determinó la conveniencia económica de los drones en el control de malezas (ver informe).

Otros usos
Además de identificar malezas y producir prescripciones de aplicación de herbicidas, los drones se están utilizando en el mundo para:

Monitorear la calidad de siembra de un cultivos.
Evaluar la superficie afectada por vuelco.
Identificar efectos de plagas, enfermedades y estrés hídrico.
Un proyecto que se perfila en el ámbito internacional es identificar malezas en tiempo real e integrar el uso de drones con plataformas autónomas y robotizadas, para tratar los cultivos también en tiempo real.

Oferta
En el mercado argentino, varias empresas ofrecen los servicios que aportan los drones.

D&E
FotoAérea
Geosistemas
G&D
Ripear
Runco

Leer más
Agricultura de precisión y sostenibilidad

¿Cómo optimizar el riego agrícola con drones

En un esfuerzo encaminado al uso eficiente del agua en el sector hidroagrícola, donde es esencial calcular con exactitud el volumen de agua que un cultivo necesita, un grupo de investigadores del Instituto Mexicano de Tecnología del Agua (IMTA) desarrolla nuevos procedimientos y metodologías para el uso y manejo del agua de riego.

Jorge Flores Velázquez, quien se desempeña como tecnólogo del agua e investigador titular B en el IMTA, explicó que para lograrlo realiza diversas actividades entre las que destaca el seguimiento a cultivos experimentales de importancia económica para el país, como es el maíz, a través de vehículos aéreos no tripulados (drones), los cuales transportan sensores que recaban información que utilizan para la generación de índices de vegetación y que a partir de esos índices desarrollarán nuevos esquemas de riego.

En su edición más reciente, el documento “Estadísticas del agua en México 2016”, elaborado por la Comisión Nacional del Agua (Conagua), señala que entre 2014 y 2015, 40 por ciento de la superficie cosechada en México fue de maíz grano y sorgo grano. Es por ello que el IMTA pone especial énfasis en la búsqueda de soluciones a la gestión del agua de uso agrícola en torno a esos granos.

En entrevista con la Agencia Informativa Conacyt, Flores Velázquez, quien es miembro nivel I del Sistema Nacional de Investigadores (SNI), explicó que este proyecto sumaría nuevas tecnologías al estudio del uso y manejo del agua a nivel parcela para optimizar su gestión.

Monitoreo sistema de riego por goteo.“Para cualquier proyecto encaminado hacia ese objetivo era necesario recopilar información constante del ciclo de cultivo; anteriormente se hacía uso de información satelital o estadística, pero la información no la recibíamos con la periodicidad necesaria y en ocasiones era imprecisa debido a factores climáticos, así que decidimos incorporar el uso de drones para este tipo de proyectos”.

«Lo primero es entender que la solución a la gestión eficiente del agua de riego no cuenta con un enfoque único, es decir, no existe una solución en su manejo a partir de un solo parámetro»
Evapotranspiración real
De acuerdo con el investigador, el primer paso fue la obtención de los equipos —drones, sensores y cámaras— y la capacitación de uso, para ello evaluaron distintas aplicaciones usando los vehículos aéreos no tripulados en topografía y en la construcción de obra. Una vez que dominaron el uso del equipo, avanzaron al desarrollo de software y metodologías.

“Posteriormente seleccionamos la parcela experimental (entre una y dos hectáreas), a la cual dimos seguimiento; antes de la siembra hicimos un vuelo de reconocimiento, después realizamos la siembra y comenzamos el monitoreo cada semana mediante imágenes captadas por las cámaras que se transportan en el dron. Mediante programas específicos llevamos a cabo un posproceso que nos permitió obtener rasgos como la altura y las características del cultivo —nivel de clorofila, por ejemplo—, a partir de imágenes térmicas y otras captadas con diversos espectros de luz”.

Esos elementos permiten a los investigadores determinar el coeficiente de cultivo —que se refiere a la relación que existe entre la evapotranspiración real (ETc) de cada cultivo específico y la evapotranspiración de referencia (ETo) en esas mismas condiciones— con lo cual es posible determinar la cantidad de agua requerida por el cultivo para compensar la pérdida por la evaporación y transpiración (evapotranspiración).

“Recapitulando, la primera etapa fue entonces obtener la tecnología y capacitación, definición de los objetivos, lo cual se puede englobar en una planeación, luego viene la ejecución que corresponde al trabajo de campo, selección del sitio y su seguimiento para levantar información de campo durante el ciclo del cultivo hasta la cosecha y, finalmente, el posproceso y presentación de resultados; todas las etapas están ligadas y ninguna es más importante que otra”.

Todo ese trabajo sirve para generar información que derivará en la creación de modelos complejos —modelos computacionales de los índices de crecimiento obtenidos—, los cuales el doctor Jorge Flores Velázquez y su equipo simplificarán y aterrizarán en una metodología que sea replicable en otras regiones.

Los resultados más relevantes del estudio y su aplicación
“Lo primero es entender que la solución a la gestión eficiente del agua de riego no cuenta con un enfoque único, es decir, no existe una solución en su manejo a partir de un solo parámetro; no podemos decir que se incrementará la eficiencia de su uso solo mejorando las líneas de conducción, la tecnología implementada o la zona de cultivo; en realidad debe abordarse el tema entendiendo todo el contexto en el que se desarrolla la agricultura de riego en México. No obstante, la aplicabilidad de estas herramientas es uno de los resultados más destacados”.

El enfoque inicial del grupo consistió en optimizar el mecanismo de riego toda vez que, en México, la mayor superficie cultivada utiliza un sistema de riego por gravedad, con técnicas de inundación y por surcos
El enfoque inicial del grupo consistió en optimizar el mecanismo de riego toda vez que, en México, la mayor superficie cultivada utiliza un sistema de riego por gravedad, con técnicas de inundación y por surcos. “Uno de los principales problemas que se identifican en estos sistemas es el uso excesivo del agua debido a longitudes de surco mayores a 200 metros, trayectos que derivan pérdida de agua por evaporación y filtración, reduciendo así su eficiencia, de ahí la importancia de optimizar el diseño del riego”.

En ese contexto, el trabajo de los investigadores puso énfasis en el estudio del diseño del riego y a partir de la información recolectada determinaron las curvas de avance y recesión en sistemas de riego por gravedad para después proponer trazos adecuados que favorezcan un riego más uniforme.

Otros elementos que mejorarán a partir de la investigación realizada por el IMTA son la estimación de los volúmenes de agua utilizada por el cultivo, lo que comúnmente se denomina lámina de riego durante el ciclo de cultivo y mecanismos automatizados de entrega.

“Con esta metodología se está trabajando en varias acciones, monitoreo de la infraestructura hidroagrícola, como canales y sistemas de riego, acciones para la mejora en la entrega volumétrica, determinación de índices de vegetación para inferir estrés hídrico, requerimientos nutrimentales del cultivo y, en general, cuestiones relacionadas con la agronomía del cultivo”.

El potencial del trabajo
El investigador detalló que buscarán replicar el modelo de levantamiento de información a través de vehículos aéreos no tripulados a otros cultivos, con otras industrias, entre ellas la cervecera y con el Instituto de Ecología (Inecol) para la detección de plagas.

“Existe un gran interés por instituciones y empresas por incluir estas herramientas en sus procesos. Actualmente se han acercado personas de la industria cervecera, quienes pretenden dar seguimiento a sus campos de cebada mediante esta metodología; asimismo, instituciones como el Inecol, que desarrollan un proyecto integral que incluye el uso de drones para la determinación de plagas y enfermedades desarrollando algoritmos propios. Las aplicaciones para esta metodología son muchas”, concluyó.

Leer más
Agricultura de precisión y sostenibilidad

Cinco pasos para un mapeo de drones de calidad

Completar su proyecto de mapeo con drones es más fácil de lo que piensa. ¡Así es cómo!
Logotipo de la aplicación Measure Ground Control
Medir el control de tierra
Para este ejemplo, asumiremos que estamos mapeando un sitio de tamaño mediano y creando tres productos de datos estándar: ortomosaico, modelo de superficie digital y mapa de contorno. En el camino, nos referiremos a Measure Ground Control (MGC), una solución de software de extremo a extremo impulsada por Pix4D.

Ahora comencemos.

Paso 1: planifique su misión
La calidad de los datos comienza con un plan. Es imperativo que comprenda completamente la ubicación del trabajo y qué tipo de datos necesita recopilar. Esa información impulsará las decisiones sobre los pilotos, el equipo y la configuración de vuelo, solo por nombrar algunos. Aquí hay algunas cosas que debe de planificar en torno a:

Ubicación. Deberá conocer la clasificación del espacio aéreo, el tamaño del sitio, la ruta de acceso, la propiedad de la propiedad y cualquier reglamentación local o requisitos de seguridad específicos del sitio. Si se requiere algún tipo de exención, permiso especial o protocolo de notificación, querrá comenzar con eso con anticipación.
Sincronización. La buena luz y el buen tiempo son claves para un vuelo seguro y exitoso. Tenga una idea clara de la extensión del área que mapeará para que pueda planificar la cantidad de tiempo necesaria para la captura de datos. Asegúrese de tener algo de tiempo de reserva en su plan, en caso de que las cosas no vayan bien, y verifique las predicciones meteorológicas con frecuencia en los días y horas previos a su misión. Nunca vuele en condiciones cuestionables.
Necesidades de datos. Si no sabe qué tipo de datos necesita, no podrá seleccionar el equipo correcto, asignar el piloto correcto o construir la ruta de vuelo correcta. En este caso, sabemos que nuestro objetivo es crear los tres productos de datos básicos producidos por MGC: ortomosaico, modelo de superficie digital y mapa de contorno.
Equipo. El tipo de datos que está recopilando y el tamaño del sitio son dos factores importantes a la hora de elegir el equipo. Para trabajos de mapeo simples en sitios pequeños a medianos, el DJI Mavic 2 Pro es una opción compacta y rentable y su cámara de 20MP recopila imágenes de alta resolución (no recomendamos cámaras por debajo de 20MP). Los drones más grandes como el DJI M210 con el sensor Zenmuse X5S también pueden hacer el trabajo, aunque a un precio más alto.
Personas. Conoce el momento de su misión, el tipo de datos que se recopilarán y el equipo que utilizará. Ahora debe asignar un piloto que no solo esté disponible en el momento y lugar de la misión, sino que también tenga las habilidades necesarias para operar el equipo de manera segura y recopilar datos de calidad. Si tiene un equipo grande, puede estar asignando varias personas a una misión.
Measure Ground Control ofrece herramientas integrales de gestión de programas y planificación de misiones. Cree una nueva misión, verifique el espacio aéreo, asigne recursos y administre el calendario de su programa.

Paso 2: crea una ruta de vuelo
Dado que comprende bien el sitio y los requisitos de datos, puede crear su ruta de vuelo con anticipación. Cuando planea crear un mapa, generalmente recopilará datos utilizando un patrón de vuelo de cuadrícula automatizado. El uso de una ruta de vuelo automatizada asegurará que las imágenes se capturen de manera consistente y con una superposición adecuada. Con la configuración correcta, obtendrá un mapa mucho mejor.

Pantalla de vuelo de cuadrícula en la aplicación de vuelo MGC
Pantalla de vuelo de cuadrícula en la aplicación de vuelo MGC
Unas palabras sobre la superposición: querrá establecer su vuelo de cuadrícula con una superposición mínima del 60%. Sin embargo, el tipo de sitio es importante. Cuanto más homogéneo sea su sitio (como un bosque de árboles o un campo de hierba), mayor será su superposición, a menudo hasta un 85% o 90%. El software de mapeo utiliza puntos de conexión (señales visuales únicas) para unir imágenes en un mapa. Si todas sus imágenes tienen el mismo aspecto, es mucho más difícil juntarlas, por lo que se requiere más superposición. Piense en ello un poco como armar un rompecabezas: si todas las piezas tienen el mismo aspecto, es más difícil de armar, por lo que necesita más pistas.

Otros parámetros de vuelo recomendados incluyen una altitud de 200-300 pies, una velocidad de 11-12 mph (tenga en cuenta que si usa MGC, establecerá automáticamente la mejor velocidad para su plan de vuelo) y un ángulo de cámara de 90 grados para el mapeo 2D.

Si está utilizando Measure Ground Control, puede crear rutas de vuelo de cuadrícula automatizadas en el portal web o en la aplicación de vuelo. Al utilizar el portal web, los planes de vuelo se sincronizarán automáticamente con la aplicación de vuelo MGC para el piloto en el campo.

Paso 3: volar y capturar datos
Como ya ha creado una ruta de vuelo de cuadrícula automatizada, volar y recopilar datos es simple. Comience por completar una lista de verificación previa al vuelo en la aplicación de vuelo MGC para mantenerse organizado en el campo y asegurarse de que se siga el protocolo adecuado. Confirme las condiciones meteorológicas y del espacio aéreo y, si es necesario, obtenga una autorización en tiempo real a través de LAANC (para volar cerca de los aeropuertos participantes).

Ahora solo asegúrese de que su ubicación de despegue (y aterrizaje) esté nivelada y libre de obstrucciones, haga los últimos ajustes y comience su vuelo. Su dron recopilará datos automáticamente de acuerdo con su ruta de vuelo y parámetros. Mantenga el contacto visual con su dron y asegúrese de que progresa a través de cada segmento de su vuelo en la red según lo planeado.

Si necesita volver a volar una parte de su cuadrícula por cualquier motivo, la aplicación de vuelo MGC lo hace fácil. No es necesario volver a hacer toda la ruta de vuelo desde el principio.

Datos de registro de vuelo en el portal web MGC
Datos de registro de vuelo en el portal web MGC
Su vuelo completo crea un registro de vuelo que combina su lista de verificación, equipo e información de ubicación con datos de telemetría como cabeceo, guiñada, balanceo, altitud y velocidad. Como operador profesional de drones, querrá capturar todos los registros de vuelo para su seguimiento y cumplimiento.

Con la aplicación de vuelo MGC, los registros de vuelo detallados se cargan automáticamente en la plataforma web MGC a través de un sistema de almacenamiento seguro en la nube que se ejecuta en servidores de EE. UU . Los registros también se pueden agregar con DJI Log Sync o manualmente.

Paso 4: Cargar y procesar datos
Confirmación de imágenes para su procesamiento en MGC
Confirmación de imágenes para su procesamiento en MGC
Después de la recopilación de datos, cargará sus imágenes para su procesamiento. Siempre revise su conjunto de datos antes de procesarlo para confirmar la calidad y la integridad de su conjunto de datos. Asegúrese de que sus imágenes sean nítidas y de que no se hayan perdido áreas y de que no haya imágenes perdidas que no pertenezcan a su mapa. Recuerde, la entrada de datos incorrectos equivale a datos incorrectos, por lo que es importante que cree su mapa utilizando un conjunto completo de imágenes de calidad.

En MGC, cargue sus datos sin procesar en la página de la misión, donde toda la información relacionada con la misión se guarda en un solo lugar. Tendrá la oportunidad de revisar cada imagen junto con su ubicación de captura. Confirme la calidad de los datos y excluya las imágenes que no pertenezcan antes del procesamiento. ‍

Una vez que esté satisfecho con su conjunto de datos sin procesar, procederá a procesar sus imágenes. Los pasos necesarios dependerán del software que esté utilizando. Algunos programas pueden ser complicados y requieren capacitación específica en el software y / o experiencia en análisis de datos SIG. Otro software, como Measure Ground Control, usa configuraciones optimizadas y le permite procesar datos con solo presionar un botón. El tiempo de procesamiento varía desde una hora para mapas pequeños hasta más de 24 horas para mapas muy grandes con más de 1500 imágenes.

Con MGC, las imágenes se procesan y los productos de datos se crean a través de una perfecta integración con Pix4D, el líder de la industria en fotogrametría.

Paso 5: obtenga sus mapas
Una vez que se completa el procesamiento, tiene acceso a sus productos de datos. Para este ejemplo, hemos elegido los tres productos de datos estándar producidos por Measure Ground Control:

Ortomosaico
Modelo de superficie digital (DSM)
Mapa de contorno

Dependiendo del software que esté utilizando, puede ver sus mapas, tomar medidas o exportar archivos para usarlos en otras plataformas de software GIS. Visor de mapas de control de tierra
es una plataforma avanzada para la visualización de sus productos de datos en 2D. Puede tomar medidas básicas, activar y desactivar productos de datos, importar su propia capa 2D y agregar información como la ruta de vuelo.

Listo para comenzar el mapeo? Obtenga una prueba gratuita de Measure Ground Control .

Leer más
Agricultura de precisión y sostenibilidad

LA NUEVA TECNOLOGÍA DE GANADERÍA DE PRECISIÓN CONTRIBUYE AL BIENESTAR ANIMAL

La cría de ganado de precisión es una tecnología inteligente que permite que los animales individuales sean monitoreados más de cerca en granjas que continúan aumentando el tamaño de sus operaciones. La creciente población mundial implica que la demanda de carne y huevos aumentará en más del 65% en los próximos 40 años. Para asegurar el suministro de alimentos para más de nueve mil millones de personas en todo el mundo, el número de cerdos y pollos y la escala de las granjas donde se crían deben aumentar. Un desarrollo paralelo es la disminución del número de agricultores. Esto significa que cada agricultor tiene que cuidar de un número creciente de animales, mientras que hay una demanda creciente de la sociedad de que se respete el derecho de los animales a la atención individual.

La nueva tecnología de ganadería de precisión contribuye al bienestar animal
Centrarse en el animal
Esto crea desafíos y nos obliga a investigar nuevas tecnologías para monitorear a los animales de manera continua y automática. La ganadería de precisión lo hace posible. Necesitamos enfocarnos en los animales individualmente, para que sus señales puedan ser detectadas e interpretadas. Necesitamos poder responder preguntas como:

¿Están experimentando buenos niveles de bienestar?
¿Están saludables?
¿Están mostrando un comportamiento normal?
puesto-del-futuro_poultry_GB_v2.jpg
iFarming
iFarming (también conocido como agricultura inteligente) es el sistema de Fancom para alojamiento de animales que mantiene su granja y ganado en las mejores condiciones. iFarming se caracteriza por el monitoreo automático y continuo de todos los factores ambientales en la casa, combinado con mediciones en y alrededor del animal. ¡El resultado es una producción sostenible y rentable! La nueva tecnología de agricultura de ganado de precisión (PLF) también se aplica dentro del alcance de iFarming.

Medir el bienestar animal
Al automatizar clima y procesos de alimentaciónha sido una práctica habitual durante años aplicar tecnología avanzada diseñada para mejorar el proceso. Por eso es extraño que cuando evaluamos realmente el bienestar animal, sigamos confiando en métodos subjetivos e incidentales como inspecciones periódicas en el galpón o incluso evaluaciones posteriores en el matadero. Pero para una valoración precisa del bienestar animal, es crucial medir sobre y alrededor del animal, así como tener en cuenta los factores ambientales. Los problemas de la piel, la condición corporal y el comportamiento anormal proporcionan una gran cantidad de datos sobre el bienestar de un animal. En comparación con las inspecciones periódicas, el registro automático también tiene muchas ventajas. En primer lugar, el registro automático puede tener lugar de forma continua y en tiempo real. Además, esta forma de registro es más objetiva. Las inspecciones físicas periódicas requieren mucho tiempo y, dado que pueden interrumpir la rutina diaria en la casa, brindan una imagen menos confiable. Esto puede llevar a que se malinterprete la situación real.

La tecnología de cría de ganado de precisión vigila a los animales las 24 horas del día, los 7 días de la semana
Precision Livestock Farming (PLF) es un nombre colectivo para un conjunto de tecnologías que usamos en y alrededor de los animales en la casa para monitorear continuamente su condición corporal. Un factor clave es que PLF permite que los animales sean monitoreados como un grupo minuto a minuto, 24/7. Este seguimiento sistemático permite reconocer determinados patrones. Si esos patrones difieren de los patrones esperados, se puede desarrollar un sistema de alerta temprana basado en estas señales.

Para comprender mejor la ganadería de precisión y las ventajas que conlleva, vea la entrevista con el profesor Berckmans.

Tecnología de medición
Se utilizan diversas tecnologías de sensores para realizar mediciones sobre y alrededor del animal. Esto incluye chips colocados en animales y cámaras y micrófonos que registran datos de forma remota. Un buen ejemplo es elmonitor de peso eYeGrowque utiliza tecnología de cámara. eYeGrow puede monitorear el desarrollo de un grupo de finalistas día a día. Pero los sistemas existentes ya instalados en la casa también generan información valiosa sobre los animales. Por ejemplo, su sistema de alimentación proporciona datos sobre el consumo de alimento y agua y un sistema de pesaje de animales proporciona una indicación de la actividad animal. El software indica que los animales son:

Moverse menos.
No comer ni beber.
Tener una tasa de crecimiento que se está desacelerando.
Evidentemente, algo anda mal, ya que todas estas señales suelen ser un primer signo de enfermedad. Es mucho más probable que un sistema de monitoreo continuo detecte estas señales, a menudo antes de que el agricultor las note. Esto permite una intervención más rápida y más específica. Estas son algunas otras tecnologías relacionadas con la ganadería de precisión:

Sistema automático de pesaje de aves
Conteo de huevos
Monitoreo del agua en alojamientos de animales.
eYeGrow
¿Qué significa la ganadería de precisión para los agricultores?
La ganadería de precisión nunca podrá reemplazar el papel del agricultor. Sin embargo, PLF hace posible que los agricultores asignen su valioso tiempo de manera más eficiente. Con las aplicaciones PLF, los agricultores pueden dirigir su atención a los animales individuales que necesitan su ayuda. En su inspección diaria de las casas, pueden concentrarse en los lugares que necesitan atención o donde los problemas son una amenaza potencial. Esto está destinado a cambiar la vida de los agricultores y sus animales. Los agricultores pueden actuar tan pronto como un animal experimente algún problema. Además, pueden dedicar más tiempo a prevenir problemas, para que los animales puedan ser criados, o puedan producir, de una forma sana y respetuosa con los animales.

Leer más
Agricultura de precisión y sostenibilidad

Impactos de las tecnologías agrícolas de precisión en Irán un análisis de la percepción de los expertos y sus determinantes

Destacar

Propusimos un modelo para investigar los factores que influyen en los impactos de la agricultura de precisión.


Estimamos los impactos de la agricultura de precisión desde el punto de vista de los expertos.


Las actitudes de los expertos indican su visión positiva hacia este tipo de impactos.


La actitud de comportamiento tiene el mayor efecto sobre los impactos.

Resumen
Hoy en día se requieren de inmediato desarrollos de métodos agrícolas que sean productiva, económica, ambiental y socialmente sostenibles. El concepto de agricultura de precisión se está convirtiendo en una idea atractiva para la gestión de los recursos naturales y la realización de un desarrollo agrícola sostenible moderno. El propósito de este estudio fue investigar los factores que influyen en los impactos de la agricultura de precisión desde el punto de vista de los expertos de la provincia de Boushehr. El método de investigación fue una encuesta transversal y se utilizó un muestreo aleatorio de múltiples etapas para recopilar datos de 115 expertos en la provincia de Boushehr. Según los resultados, los expertos encontraron la conservación de las aguas subterráneas y superficiales, el desarrollo de áreas rurales, el aumento de la productividad y el aumento de los ingresos como los impactos más importantes de las tecnologías agrícolas de precisión. Las actitudes de los expertos indican su visión positiva hacia este tipo de impactos. Además, la actitud conductual tiene el mayor efecto sobre los impactos.

Artículo anterior en cuestiónSiguiente artículo en cuestión
Palabras clave
Agricultura sostenibleAgricultura de precisiónEvaluación de impactoBoushehrIran
1 . Introducción
En los últimos años, la agricultura se ha convertido en una industria en respuesta a la provisión de alimentos y la seguridad alimentaria y la relación humana con el medio ambiente ha cambiado debido a los logros en diferentes tecnologías [16] . En este sentido, los sistemas agrícolas enfatizan en la utilización de insumos producidos por combustibles fósiles como fertilizantes químicos , pesticidas, herbicidas y maquinaria agrícola con alto consumo de combustible. Aunque la aplicación de estas tecnologías ha aumentado el rendimiento y la eficiencia de la mano de obra, ha destruido muchos recursos naturales de los que depende la continuidad de los sistemas agrícolas. Por lo tanto, esta destrucción afectará primero a los agricultores y luego a la sociedad [4].. Los productos agrícolas producidos a través de la agricultura moderna basados ​​en métodos de revolución verde traen consigo muchos problemas para la salud humana y destruyen los recursos naturales debido a la aplicación de patrones de producción inadecuados, insostenibilidad de los sistemas de producción, pérdida de recursos básicos y, en consecuencia, amenazan las instalaciones de producción, de ahí que este tema proceso de producción imposible. Por lo tanto, se requiere inmediatamente el desarrollo de métodos agrícolas que sean productiva, económica y socialmente sostenibles [19] .

Con la introducción de la informatización agrícola, la agricultura tradicional se ha reformado mediante TIC avanzadas, lo que finalmente ha contribuido a mejoras significativas en la productividad y sostenibilidad agrícolas [28] . El concepto de agricultura de precisión, basado en la tecnología de la información, se está convirtiendo en una idea atractiva para gestionar los recursos naturales y lograr un desarrollo agrícola sostenible moderno [13] .

1.1 . Agricultura de precisión
La agricultura de precisión es un sistema integrado de manejo de cultivos que combina tecnologías de la información con industrias agrícolas racionales e intenta proporcionar cantidades y tipos de insumos basados ​​en las necesidades reales de cultivo en pequeñas fincas ubicadas dentro de una gran finca [11] . Además, la agricultura de precisión se considera un sistema de gestión agrícola sobre la base de la tecnología de la información para determinar, analizar y gestionar cambios dentro de una granja para la rentabilidad, sostenibilidad y conservación óptima de las granjas [7] . Este sistema se centra en la gestión de producción específica del sitio. La agricultura de precisión presenta un nuevo concepto en el uso sostenible de los recursos agrícolas y se define como un concepto de gestión que combina las tecnologías de la información y las comunicaciones para gestionar los cambios temporales y espaciales en la explotación [6] . El objetivo básico de la AP es optimizar el rendimiento con un aporte mínimo y una contaminación ambiental reducida [14] .

La agricultura de precisión con el propósito de la gestión de insumos proporcionará métodos de producción distinguidos para los productores agrícolas y, como cualquier otra tecnología, puede permitir a los agricultores recopilar datos con el propósito de identificar variables efectivas sobre el rendimiento potencial de la granja. Además, los agricultores pueden tomar decisiones sobre los insumos y utilizarlos en tasas variables [17] .

1.2 . Impactos de la agricultura de precisión
Se han reportado varias investigaciones que evalúan los impactos de las tecnologías de agricultura de precisión. Este enfoque no solo puede reducir los costos, sino que también puede aumentar los rendimientos. Además, la aplicación precisa de productos químicos y fertilizantes solo cuando sea necesario reduce el potencial de contaminación de las aguas subterráneas y superficiales [10] . La agricultura de precisión no solo contribuirá al ahorro de costes, sino que también tendrá considerables beneficios medioambientales [7].. Una mayor eficiencia a través de sistemas precisos de guía de maquinaria por sí sola puede generar retornos cuantificables para los agricultores. Los sistemas de dirección automática precisos podrían ahorrar a los agricultores entre un 5% y un 15% en costos de insumos (combustible, pesticidas y fertilizantes) al reducir el lapeado excesivo o insuficiente y aumentando la puntualidad de las operaciones, como facilitar la fumigación de pesticidas por la noche. El aumento del rendimiento, la mejora de la producción económica y la compensación de costes se tienen en cuenta como las ventajas de aplicar tecnologías de agricultura de precisión [2] . Dobermann y col. [5] cree que, junto con los beneficios económicos, deben tenerse en cuenta los beneficios ambientales como la disminución de las emisiones de gases de efecto invernadero y la contaminación causada por fertilizantes y plaguicidas [8]. Al reducir la aplicación excesiva y la aplicación insuficiente de insumos como nutrientes y plaguicidas, esta estrategia tiene el potencial de mejorar la rentabilidad para el productor y también de reducir la amenaza de contaminación del agua subterránea o superficial por productos químicos agrícolas [22] .

Según Zhang et al. [27] la gente esperaba los impactos del uso de la agricultura de precisión en la rentabilidad para los productores y los beneficios ecológicos y ambientales. La adopción de la agricultura de precisión afectará las oportunidades de empleo (prestación de servicios de consultoría, servicios de apoyo, herramientas especializadas, etc.) y las estructuras agrícolas, especialmente la distribución del tamaño de las granjas en las zonas rurales y el uso de fertilizantes químicos, plaguicidas y otros insumos agrícolas de manera eficiente disminuirá los problemas ambientales [21] . Según Swinton y Lowenberg-DeBoer [23], la agricultura de precisión ha generado una rentabilidad del 57%. Otro estudio demostró que las tecnologías de agricultura de precisión dieron como resultado la rentabilidad de las granjaspor aumento de rendimiento y reducción de costos de insumos. Mientras tanto, la mejora de la administración financiera provoca una mejora de la administración de riesgos y una mejora de la capacidad de gestión de las granjas [26] . Impulsar la productividad, rentabilidad y sostenibilidad, mejorar la calidad del producto, gestionar eficientemente el producto, preservar el suelo, los recursos hídricos y energéticos, conservar las aguas subterráneas y superficiales, optimizar la eficiencia productiva, minimizar los impactos y riesgos ambientales lo que se hace con el propósito de la sostenibilidad ambiental y económica otros impactos estipulados de estas tecnologías [18] .

Diferentes científicos han presentado varios modelos para examinar actitudes y comportamientos. Las teorías que se utilizan en este artículo se comentan a continuación.

1.3 . Teoría de la acción Razonada
Esta teoría se basa en la psicología y define la relación entre actitudes y comportamiento. Según esta teoría, la adopción de la innovación se vería afectada por factores individuales y sociales. El factor individual se define como una creencia positiva o negativa hacia la formación de la conducta o se considera como la misma actitud hacia la formación de la conducta, y el factor social son las normas subjetivas o el impacto de la presión social en la persona, ya sea que resulte en la formación de la conducta o no [ 9] .

1.4 . Teoría del comportamiento planificado
En psicología, la teoría de la conducta planificada se introduce como un vínculo entre actitud y conducta. Esta teoría se presenta con base en la teoría de la acción razonada. Según la teoría de TPB, los comportamientos de los individuos estarán determinados por sus intenciones afectadas por la actitud, la norma subjetiva y el control conductual percibido [18] .

1.5 . Modelo de aceptación de Tecnología
El modelo de aceptación de tecnología (TAM) fue propuesto por Davis como un instrumento para predecir la probabilidad de que se adopte una nueva tecnología dentro de un grupo u organización [17] . Basado en la teoría de la acción razonada, el TAM se basa en la hipótesis de que la aceptación y el uso de la tecnología se pueden explicar en términos de las creencias, actitudes e intenciones internas del usuario. Como resultado, debería ser posible predecir el uso futuro de la tecnología aplicando el TAM en el momento en que se introduce una tecnología. El TAM original midió el impacto de cuatro variables internas sobre el uso real de la tecnología. Las variables internas en el TAM original fueron: facilidad de uso percibida (PEU), utilidad percibida (PU), actitud hacia el uso (A) e intención conductual de uso (BI) [25] .

Shyu y Huang [20] realizaron un estudio basado en el modelo de aceptación de la tecnología y sus resultados revelaron que la utilidad percibida y las variables de disfrute percibido afectaban la actitud de uso. Además, la actitud de uso y la utilidad percibida influyeron en la intención de uso. Nan y col. [15] examinó el modelo desarrollado de aceptación de tecnología de la información basado en el modelo TAM. Los resultados mostraron que la variable de intención conductual a corto plazo se vio afectada por impactos directos de compatibilidad, actitud de uso y utilidad percibida. La relación causal entre la intención conductual a corto plazo, la compatibilidad, la actitud de uso y la intención conductual a largo plazo fue positiva. Además, la facilidad de uso percibida y la utilidad percibida tuvieron un efecto positivo en la actitud de uso. Chen y col. [3]presentó un modelo para investigar la intención hacia las tecnologías modernas mediante la combinación de modelos TAM y TPB. Según los resultados, rasgos de innovación como la utilidad percibida y la facilidad de uso percibida provocaron el desarrollo de una actitud positiva hacia el uso de tecnologías y actitudes modernas, las normas subjetivas y el control conductual percibido afectaron la intención de uso.

Numerosos estudios realizados sobre comportamientos ambientales han demostrado que el conocimiento es un predictor importante del comportamiento, ya que esta variable puede influir en todo el proceso de toma de decisiones de forma que una persona pueda tomar una decisión equivocada a través de información y conocimiento incorrectos [12] . Según Tress [24], existía una relación entre la dificultad de transición percibida hacia actividades sostenibles y la actitud hacia estas actividades. La forma en que las personas encuentran difícil la transición hacia actividades sostenibles mostrará una actitud más negativa. Según la literatura, Irán debería seguir más seriamente las tecnologías de agricultura de precisión confiando en sus capacidades potenciales [18]. En consecuencia, este fin no se puede lograr sin la cooperación de quienes están a cargo de la agricultura. Debido al papel clave de los expertos agrícolas en afectar la adopción de la innovación por parte de los agricultores, el propósito de este estudio fue investigar los factores que influyen en los impactos de la agricultura de precisión desde el punto de vista de los expertos de la provincia de Boushehr. De acuerdo con las revisiones de la literatura, se presenta el siguiente marco para investigar los factores que afectan los impactos ( Fig. 1 ).

Descargar: Descargar imagen de alta resolución (253KB)Descargar: Descargar imagen a tamaño completo
Figura 1 . Marco teórico.

2 . Método de investigación
Se utilizó una encuesta transversal para recopilar datos mediante un cuestionario. La lista de índices para medir la variable dependiente se proporcionó a través de tres pasos. En el primer paso, se recopiló información relacionada con los impactos de la agricultura de precisión a partir de documentos y recursos de otros países. En el segundo paso, se realizó un estudio pre-piloto en agricultores pioneros domiciliados en las regiones de Marvdasht para confirmar los impactos. En el último paso se entrevistó a algunos expertos de la organización Jihad-e-Keshavarzi en la provincia de Fars.

Los datos para probar el modelo se recopilaron entre expertos agrícolas en la provincia sur de Irán en 2016. Esta provincia tiene la capacidad adecuada para expandir las actividades agrícolas cualitativa y cuantitativamente y es una de las pioneras en la introducción y difusión de nuevas tecnologías. Boushehr incluye 9 ciudades y tiene un clima cálido, y su precipitación media anual es de entre 200 y 250 mm. En 2007, su total de campos de cultivo era de unas 236.053 ha. 5142 ha de estos campos se asignan al cultivo de agua y las 184,811 ha restantes se asignan al cultivo de secano . La mayoría de los campos de cultivo se dedican al trigo en 167.351 ha y al tomate en 14.519 ha. La agricultura en los huertos de la provincia de Bousher se realiza en 40.661 ha, de los cuales los dátiles son la mayor parte con 37 265/2 ha. La población estadística en esta investigación incluye a todos los expertos de Jihad-e-Keshavarzi que trabajan en la provincia de Bousher. Se utilizó un muestreo aleatorio de múltiples etapas para recopilar datos. El número de muestras se estimó con base en la población estudiada y la fórmula de Cochran y se entrevistó a 115 expertos de la provincia de Boushehr y se recopilaron los datos requeridos mediante cuestionarios. La validez del cuestionario fue probada por expertos del Departamento de Extensión y Educación Agrícola de la Universidad de Shiraz. El cuestionario fue probado de forma piloto con 30 expertos agrícolas seleccionados al azar de la muestra. Sobre la base de los comentarios de la prueba piloto, se perfeccionó el cuestionario y se elaboró ​​un cuestionario final revisado. Los coeficientes alfa de Cronbach para las variables se han presentado enCuadro 1 . La tabla 2 muestra la definición de variables.

Cuadro 1 . Coeficientes alfa de Cronbach para variables de investigación.

Variables Coeficiente alfa de Cronbach
Actitud conductual 0,75
Facilidad de uso percibida 0,74
Utilidad percibida 0,77
Actitud de confianza 0,80
Innovación individual 0,77
Conocimiento de agricultura de precisión 0,97
Dificultad de transición percibida 0,85
Impactos de las tecnologías agrícolas de precisión 0,94
Cuadro 2 . Definición de variables.

Variables Definición
Utilidad percibida La utilidad percibida se define como la medida en que una persona cree que el uso del sistema mejorará su desempeño laboral (Venkatesh y Davis, 2000). La variable se midió utilizando elementos relacionados con el aumento de la productividad, la reducción de los costos de producción, un mejor control de las actividades agrícolas, etc. Las preguntas estaban en forma de escalas de cinco puntos etiquetadas de muy de acuerdo a muy en desacuerdo
Facilidad de uso percibida Según Davis (1989), la facilidad de uso percibida se define como la medida en que una persona cree que el uso del sistema estará libre de esfuerzo físico y mental (Lu et al., 2005). Esta variable se estimó utilizando ítems relacionados con la facilidad de aprendizaje, el esfuerzo mental requerido para utilizar estas tecnologías, la eficacia del uso de las opiniones de los expertos en la aplicación de estas tecnologías, etc. Las preguntas estaban en forma de escalas de cinco puntos etiquetadas de muy de acuerdo a muy discrepar
Actitud conductual Taylor y Todd (1995) definieron una escala de actitud que midió si a las personas les gusta o no les gusta usar la tecnología y cómo se sienten al usarla. Definimos operativamente la actitud para utilizarla como el sentimiento positivo o negativo del posible experto sobre la adopción de tecnologías agrícolas de precisión. Esta variable se estimó con el uso deseable o no deseable de estas tecnologías, el uso razonable o irrazonable de las tecnologías y la actitud positiva y negativa hacia las tecnologías agrícolas de precisión. Las preguntas tenían la forma de escalas de cinco puntos etiquetadas de muy de acuerdo a muy en desacuerdo
Actitud de confianza Esta variable mide la confianza de un productor para aprender y utilizar tecnologías agrícolas de precisión. A través de la escala de Loyd y Gressard (1984) se plantearon una serie de preguntas en relación a tener certeza para aprender tecnologías agrícolas de precisión en clases y talleres educativos y también a tener autoconfianza en el uso de estas tecnologías, etc. Las preguntas fueron en forma de escalas de cinco puntos etiquetadas de muy de acuerdo a muy en desacuerdo
Innovación individual La innovación individual se define como «la voluntad de un individuo de probar cualquier tecnología nueva». Se estimó a través de ítems propuestos por Agarwal y Prasad (1998). Las preguntas tenían la forma de escalas de cinco puntos etiquetadas de muy de acuerdo a muy en desacuerdo
Conocimiento de agricultura de precisión La familiaridad individual con las características y tecnologías de la agricultura de precisión revela el conocimiento individual en relación con este sistema agrícola. Para medir esta variable se plantearon una serie de preguntas en el campo de las tecnologías agrícolas de precisión y las preguntas fueron en forma de escalas de cinco puntos etiquetadas de cero a muy alto
Dificultad de transición percibida La dificultad de transición percibida hacia la agricultura de precisión se considera como un índice para medir la percepción e idea individual sobre la dificultad de transición de la agricultura convencional hacia la adopción y aplicación de la agricultura de precisión. Se midió mediante preguntas sobre la posibilidad de la implementación de la agricultura de precisión con atención a las condiciones agrícolas y la situación económica y educativa en Irán. Las preguntas tenían la forma de escalas de cinco puntos etiquetadas de muy de acuerdo a muy en desacuerdo.
Impactos de la agricultura de precisión Los impactos de la agricultura de precisión incluyen actitudes y creencias individuales sobre los posibles impactos de este tipo de tecnologías. En cuanto a los impactos de las tecnologías de agricultura de precisión en los campos técnico, social, económico y ambiental, se formularon treinta y siete preguntas. Se utilizaron escalas de seis puntos que iban de ninguno a muy alto para evaluar los impactos.
Los datos de los cuestionarios se codificaron y analizaron mediante el software LISREL. El modelado de ecuaciones estructurales (SEM), un análisis multivariado , es un método apropiado para analizar variables latentes, como construcciones desarrolladas a partir de elementos de encuestas. SEM es similar a la regresión múltiple pero se utiliza para analizar y calcular la varianza explicada en variables latentes endógenas y exógenas. La relación entre constructos (o variables latentes) está representada por los coeficientes de trayectorias [1] . Además de la estadística descriptiva y las técnicas inferenciales, se utilizaron frecuencias, porcentaje, puntuación media, desviación estándar, coeficientes de correlación y modelado de ecuaciones estructurales para analizar los datos.

3 . Resultados y discusión
3.1 . Impactos de las tecnologías agrícolas de precisión
3.1.1 . Impactos ambientales
En la Tabla 3 se ilustra la frecuencia y la media de cada impacto de las tecnologías de agricultura de precisión. Debido a la media de impactos ambientales de las tecnologías de agricultura de precisión, los expertos han encontrado la conservación de aguas subterráneas y superficiales con una media de 4.02 como el impacto ambiental más importante de este plan. De esta forma, el 69,6% de los expertos ha evaluado el alto impacto del uso de tecnologías de agricultura de precisión en la conservación de aguas subterráneas y superficiales y solo el 0,9% cree que el impacto es muy bajo. Los resultados de Sudduth et al. [22] estudio está de acuerdo con este hallazgo. Tabla 3muestra que el manejo de malezas y la conservación de fuentes de energía con una media de 3.93 se colocan en el segundo rango después de la conservación de aguas subterráneas y superficiales. Así, el 72,2% y el 60% de los expertos definieron un alto impacto de las tecnologías de agricultura de precisión en el manejo de malezas y la conservación de las fuentes de energía y el 1,7% y el 2,6% de la muestra definieron un impacto bajo. Ninguno de los expertos consideró que las tecnologías de agricultura de precisión no tuvieran impacto en el manejo de malezas y la conservación de fuentes de energía. Además, el 73,9% de los expertos informaron que el uso de tecnologías de agricultura de precisión dio como resultado el manejo de plagas y solo el 2,6% de la muestra cree que el uso de tecnologías de agricultura de precisión tuvo un impacto muy bajo en el manejo de plagas. Cabe mencionar que el manejo de plagas tiene una media igual a 3.87. Según los resultados, la gestión de enfermedades de las plantasy la elaboración de productos saludables tienen, respectivamente, medias de 3,86 y 3,82. Los resultados de Jochinke et al. [8] confirman este hallazgo. Según la Tabla 3 , el 54,8% de los expertos evaluó un impacto promedio del uso de tecnología de agricultura de precisión en las emisiones de gases verdes. Este impacto ambiental tiene el valor mínimo con media de 3.06 y los expertos lo han tenido en cuenta menos que otros impactos ambientales como impacto de las tecnologías de agricultura de precisión.

Cuadro 3 . Impactos ambientales de la agricultura de precisión.

Variable Impacto positivo Sin impacto Desviación Estándar Media de rango Prioridad
Muy alto Alto Promedio Bajo Muy bajo
Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento
Manejo de plagas 12 10,4 85 73,9 13 11,3 2 1,7 3 2.6 0,71 3,87 3
Manejo de enfermedades de plantas 11 9,6 85 73,9 13 11,3 4 3,5 2 1,7 0,69 3,86 4
Manejo de malezas dieciséis 13,9 83 72,2 10 8.7 4 3,5 2 1,7 0,72 3,93 2
Conservación de fuentes de energía 25 21,7 69 60,0 12 10,4 6 5.2 3 2.6 0,87 3,93 2
Conservación de aguas subterráneas y superficiales 22 19,1 80 69,6 8 7.0 4 3,5 1 0,9 0,69 4.02 1
Contaminación de aguas subterráneas y superficiales 15 13,0 69 60,0 17 14,8 7 6.1 4 3,5 3 2.6 1.06 3,65 9
La contaminación del suelo 17 14,8 27 23,5 54 47,0 10 8.7 4 3,5 3 2.6 1,10 3,29 10
La erosión del suelo 18 15,7 67 58,3 11 9,6 14 12,2 3 2.6 2 1,7 1.07 3,66 8
Compactación del suelo 12 10,4 77 67,0 11 9,6 9 7.8 3 2.6 3 2.6 1.03 3,66 8
Consumo de plaguicidas 17 14,8 69 60,0 17 14,8 7 6.1 4 3,5 1 0,9 0,96 3,73 6
Consumo de fertilizantes 18 15,7 68 59,1 15 13,0 9 7.8 3 2.6 2 1,7 1.02 3,72 7
Emisiones de gases de efecto invernadero 9 7.8 23 20,0 63 54,8 11 9,6 5 4.3 4 3,5 1.04 3,06 12
La biodiversidad 8 7.0 39 33,9 50 43,5 11 9,6 4 3,5 3 2.6 1.02 3,23 11
Producir productos saludables 20 17,4 73 63,5 12 10,4 4 3,5 4 3,5 2 1,7 0,99 3,82 5
3.1.2 . Impactos sociales
Según la Tabla 4, los expertos han introducido socialmente el desarrollo de áreas rurales con una media de 3.93 como el impacto más importante del uso de tecnologías de agricultura de precisión. Los resultados de este factor revelaron que el 70,4% de los expertos evaluaron un alto impacto de la tecnología de agricultura de precisión en el desarrollo de las zonas rurales y solo el 1,7% de la muestra informó que el impacto fue muy bajo. De acuerdo con la tabla antes mencionada, la disminución de la brecha de clase social con una media de 2,41 fue el valor más bajo como el impacto del uso de tecnologías de agricultura de precisión. Mientras tanto, en promedio, los expertos evaluaron la inmigración como un impacto social de las tecnologías de agricultura de precisión. Este índice tiene una media igual a 2,47.

Cuadro 4 . Impactos sociales de la agricultura de precisión.

Variable Impacto positivo Sin impacto Desviación Estándar Media de rango Prioridad
Muy alto Alto Promedio Bajo Muy bajo
Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento
Oportunidades de trabajo 13 11,3 73 63,5 20 17,4 3 2.6 3 2.6 2 1,7 1.06 3,68 4
1 a 0,9 a
Fuerza de trabajo 10 8.7 33 28,7 56 48,7 5 4.3 3 2.6 1,81 2,95 6
1 a 0,9 a 1 a 0,9 a 2 a 1,7 a 4 a 3,5 a
Bienestar dieciséis 13,9 71 61,7 17 14,8 7 6.1 3 2.6 1 0,9 0,92 3,75 3
Inmigración 8 7.0 25 21,7 55 47,8 9 7.8 5 4.3 1 0,9 2,29 2,47 7
2 a 1,7 a 6 a 5,2 a 2 a 1,7 a 1 a 0,9 a 1 a 0,9 a
Brecha de clase social 7 6.1 25 21,7 57 49,6 8 7.0 4 3,5 2 1,7 2,38 2,41 8
2 a 1,7 a 8 a 7,0 a 2 a 1,7 a
Estilo de vida 13 11,3 30 26,1 53 46,1 9 7.8 5 4.3 4 3,5 1,35 3,14 5
1 a 0,9 a
Satisfacción con la calidad de vida 17 14,8 73 63,5 14 12,2 7 6.1 2 1,7 2 1,7 0,95 3,78 2
Desarrollo de áreas rurales 17 14,8 81 70,4 11 9,6 4 3,5 2 1,7 0,73 3,93 1
una
Muestra a los expertos que creen que los impactos de las tecnologías de agricultura de precisión en estos índices son negativos.

3.1.3 . Impactos técnicos
De acuerdo con la Tabla 5, los expertos encontraron un aumento de la productividad con una media de 3.94 como el impacto técnico más importante de las tecnologías de agricultura de precisión. El 71,3% de los expertos evaluó un alto impacto de las tecnologías de agricultura de precisión en el aumento de la productividad y el 14,8% de ellos evaluó un impacto muy alto. Ninguno de los expertos consideró que las tecnologías de agricultura de precisión no tuvieran impacto en la productividad. Este resultado es compatible con el estudio de Jochinke et al. [8] . La calidad de los productos y la mejora de la condición de la granja con una media de 3.90 se colocan en el segundo rango después del aumento de la productividad. Por lo tanto, el 67% y el 74,8% de los expertos explicaron que el impacto del uso de tecnologías de agricultura de precisión en la calidad de los productos y la mejora de las condiciones agrícolas es alto. Basado en la Tabla 5La expansión de tierras agrícolas y el tiempo de operaciones agrícolas con una media de 3,74 y 3,76 se colocaron en el rango más bajo. Pero debe tenerse en cuenta que las medias de ambos factores son más de 3 y la mayoría de la muestra ha evaluado el impacto promedio y alto de las tecnologías de agricultura de precisión en la expansión de tierras agrícolas y el tiempo de operaciones agrícolas.

Cuadro 5 . Impactos técnicos de la agricultura de precisión.

Variable Impacto positivo Sin impacto Desviación Estándar Media de rango Prioridad
Muy alto Alto Promedio Bajo Muy bajo
Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento
Productividad 17 14,8 82 71,3 11 9,6 3 2.6 2 1,7 0,71 3,94 1
Calidad de los productos 18 15,7 77 67,0 14 12,2 4 3,5 1 0,9 1 0,9 0,79 3,90 2
Expansión de tierras agrícolas 12 10,4 79 68,7 13 11,3 6 5.2 4 3,5 1 0,9 0,90 3,74 8
Sostenibilidad de productos 11 9,6 83 72,2 13 11,3 4 3,5 4 3,5 0,79 3,80 5
Gestión del consumo de insumos 15 13,0 77 67,0 14 12,2 6 5.2 3 2.6 0,81 3,82 3
Tiempo de operaciones agrícolas 11 9,6 81 70,4 12 10,4 8 7.0 2 1,7 1 0,9 0,85 3,76 7
Mejora de la condición de la granja 12 10,4 86 74,8 12 10,4 4 3,5 1 0,9 0,64 3,90 2
Depreciación de maquinaria 17 14,8 71 61,7 17 14,8 7 6.1 2 1,7 1 0,9 0,89 3,79 6
Crear una base de datos con información sobre el estado del terreno. 14 12,2 79 67,7 15 13,0 1 0,9 6 5.2 0,85 3,81 4
3.1.4 . Impactos económicos
Tabla 6Demuestra que los expertos consideran económicamente el aumento de los ingresos con una media de 3,99 como el impacto más significativo, por lo que el 63,5% de la muestra consideró un alto impacto de las tecnologías de agricultura de precisión en el aumento de los ingresos y el 20% de ellos evaluó un impacto muy alto. Después de los ingresos, la mejora y la prosperidad del estado agrícola con una media de 3,98 se coloca en el segundo rango. Los resultados de mejora y prosperidad del estado agrícola mostraron que el 61,7% de los expertos evaluaron un alto impacto de las tecnologías de agricultura de precisión en la mejora y prosperidad del estado agrícola y el 21,7% de ellos evaluó un impacto muy alto. Según esta tabla, la disminución del riesgo con el rango 3.53 se coloca en el rango más bajo.

Cuadro 6 . Impactos económicos de la agricultura de precisión.

Variable Impacto positivo Sin impacto Desviación Estándar Media de rango Prioridad
Muy alto Alto Promedio Bajo Muy bajo
Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento Frecuencia Por ciento
Rentabilidad 25 21/7 67 58,3 18 15,7 2 1,7 2 1,7 1 0,9 0,86 3,93 4
Riesgo 13 11,3 67 58,3 17 14,8 9 7.8 5 4.3 4 3,5 1,14 3,53 6
Reducir el costo de los insumos 14 12,2 73 63,5 19 16,5 5 4.3 4 3,5 0,85 3,76 5
rendimiento 20 17,4 75 65,2 15 13,0 4 3,5 1 0,9 0,72 3,94 3
Ingresos 23 20,0 73 63,5 15 13,0 3 2.6 1 0,9 0,71 3,99 1
Mejora y prosperidad del estado agrícola 25 21,7 71 61,7 12 10,4 6 5.2 1 0,9 0,78 3,98 2
La media de la actitud de los expertos hacia los impactos de la agricultura de precisión indica que los expertos ven las tecnologías de la agricultura de precisión de manera positiva. Según la Tabla 7, la media de la actitud de los expertos en todos los campos es más de 3.

Cuadro 7 . La media de los impactos de las tecnologías de agricultura de precisión desde el punto de vista de los expertos.

Variable Desviación Estándar Media
El impacto de la agricultura de precisión 0,56 3,66
Impactos ambientales 0,67 3,97
Impactos sociales 0,81 3,26
Impactos técnicos 0,61 3,83
Impactos económicos 0,67 3,86
3.2 . Correlación entre variables
La Tabla 8 proporciona coeficientes de correlación entre variables. Los coeficientes de correlación entre la actitud de comportamiento con la utilidad percibida, la innovación individual y los impactos de las tecnologías agrícolas de precisión se calcularon 0.52, 0.42 y 0.56 respectivamente. Los coeficientes fueron significativos al nivel de significancia 0.01.

Cuadro 8 . La matriz de coeficientes de correlación entre variables.

Variables Actitud conductual Facilidad de uso percibida Utilidad percibida Actitud de confianza Innovación individual Conocimiento de agricultura de precisión Dificultad de transición percibida Impactos de las tecnologías agrícolas de precisión
Actitud conductual 1
Facilidad de uso percibida 0,06 1
Utilidad percibida 0,52 ** 0,30 ** 1
Actitud de confianza 0,35 ** 0,56 ** 0,64 ** 1
Innovación individual 0,42 ** 0,36 ** 0,42 ** 0,54 ** 1
Conocimiento de agricultura de precisión 0,16 0,22 * 0,10 0,31 ** 0,27 ** 1
Dificultad de transición percibida −0,17 −0,02 −0,10 −0,06 −0,08 −0,14 1
Impactos de las tecnologías agrícolas de precisión 0,56 ** 0,19 * 0,48 ** 0,36 ** 0,38 ** 0,30 ** −0,10 1
*
Significativo en p < 0,05. ** Significativo en p < 0,01. Los coeficientes revelaron que hubo una relación significativa y positiva entre la facilidad de uso percibida y la actitud de confianza (0.56, P = 0.01), la innovación individual (0.36, P = 0.01) y el conocimiento de la agricultura de precisión (0.22, P = 0.05). El análisis de correlación de la utilidad percibida con otras variables indicó que tiene una relación positiva con la actitud de confianza (r = 0.64, P = 0.01), la innovación individual (r = 0.42, P = 0.01) y los impactos de las tecnologías agrícolas de precisión (r = 0,48, P = 0,01). Los resultados del análisis de correlación de Pearson mostraron una relación positiva entre la actitud de confianza y la innovación individual (r = 0.54, 0.01), el conocimiento de la agricultura de precisión (r = 0.31, P = 0.01) y los impactos de las tecnologías agrícolas de precisión (r = 0.36 , P = 0,01). Los coeficientes de correlación revelaron una relación positiva entre la innovación individual y el conocimiento de la agricultura de precisión (r = 0.27, P = 0.01) y los impactos de las tecnologías agrícolas de precisión (r = 0.38, P = 0.01). Mientras tanto, hubo una relación positiva entre el conocimiento de la agricultura de precisión y los impactos de las tecnologías agrícolas de precisión (r = 0.30, P = 0.01). 3.2.1 . Evaluación del modelo de medición Uno de los criterios para la evaluación del modelo de medición es Chi-Cuadrado / Grado de libertad, que debe ser inferior a tres. Este valor es 1,15. El siguiente en evaluar el modelo es el valor p, que debe ser superior a 0,05, en la Tabla 9.se ve igual a 0.43. Calcular la bondad de ajuste, ajustar la bondad de ajuste, el índice de ajuste normalizado, el índice de ajuste no normalizado y el índice de ajuste comparativo son necesarios para el ajuste del modelo de tal manera que sus valores deben ser superiores a 0,90. Además, la raíz cuadrática residual media y el error cuadrático medio de aproximación deben ser menores que 0.05 y 0.10. Según los resultados, los índices fueron superiores a 0,9. El error cuadrático medio de aproximación para el modelo de medición y el residuo cuadrático medio de la raíz se calcularon 0,06 y 0,02 respectivamente. De hecho, estas variables presentan un modelo adecuado para definir la actitud hacia los impactos de las tecnologías agrícolas de precisión. Cuadro 9 . Evaluación del modelo de medidas de ajuste general. Medida de bondad de ajuste Criterio recomendado Resultados obtenidos en esta investigación Chi-cuadrado / grado de libertad (X 2 / gl) ≤3 1,15 valor p ≥0.05 0.43 Índice de ajuste normalizado (NFI) ≥0,90 0,91 Índice de ajuste no normalizado (NNFI) ≥0,90 0,99 Índice de ajuste comparativo (CFI) ≥0,90 1,00 Índice de bondad de ajuste (GFI) ≥0,90 0,99 Ajustar el índice de bondad de ajuste (AGFI) ≥0,90 0,97 Residual cuadrático medio (RMSR) ≤0.05 0,02 Error cuadrático medio de aproximación (RMSEA) ≤0.1 0,06 Los resultados mostraron que ( Fig. 2 ) existe un efecto causal positivo y significativo entre la utilidad percibida y la actitud conductual (λ = 0,40, p < % 1). Los resultados de Shyu y Huang [20] , Nan et al. [15] , Chen et al. [3] confirman este hallazgo. La innovación individual es una variable externa que tiene un efecto directo sobre la actitud conductual (λ = 0.22, p < % 1). El análisis de los resultados indicó un efecto positivo de la facilidad de uso percibida sobre la actitud conductual (λ = 0,12, p < % 5). Este hallazgo es consistente con los resultados de Nan et al. [15] y Chen et al. [3]. Estas variables explicaron el 24% de los cambios de actitud de comportamiento (SMC = 0,24). Los hallazgos demuestran que la actitud conductual tiene el efecto más directo sobre los impactos de las tecnologías agrícolas de precisión y la relación causal de esta variable fue 0,64 (β = 0,64, p < % 1). Después de la actitud conductual, la utilidad percibida tiene el efecto más significativo sobre los impactos de las tecnologías agrícolas de precisión (λ = 0.33, p < % 1). Según los resultados, la dificultad de transición percibida tiene un efecto negativo directo sobre los impactos de las tecnologías agrícolas de precisión (λ = 0,17, p < % 5). A partir de los resultados, la facilidad de uso percibida y las variables de innovación individual tuvieron efectos indirectos sobre los impactos de las tecnologías agrícolas de precisión. Estas variables anticipan el 39% de los cambios de impactos de las tecnologías agrícolas de precisión (SMC = 0.39). Descargar: Descargar imagen de alta resolución (270KB)Descargar: Descargar imagen a tamaño completo Figura 2 . Modelado de ecuaciones estructurales y coeficientes de trayectoria entre variables. 4 . Conclusión y Recomendaciones Hoy en día, las tecnologías útiles junto con la estrategia de conservación del medio ambiente, así como los puntos de vista cambian de estrategias correctivas a estrategias preventivas en el uso de tales tecnologías, están en el centro de atención. Se hacen esfuerzos para enfatizar la aplicación de las ciencias modernas en la agricultura que se relacionan con el impulso de la producción y la productividad y la conservación del medio ambiente. La tecnología de la información en la agricultura llamada tecnologías agrícolas de precisión se considera una de las tecnologías modernas. Este tipo de sistema agrícola es un manejo de precisión agrícola basado en datos y conocimientos de insumos y considera el uso de insumos en términos de las necesidades de las granjas y el manejo específico del sitio. La agricultura de precisión se refiere a un enfoque sistemático para rehacer todo el sistema de agricultura para desarrollar una agricultura sostenible, de bajos insumos y de alto rendimiento. Los métodos de agricultura de precisión pueden mejorar la sostenibilidad económica y ambiental de la producción. Según los resultados de este trabajo, la aplicación de sistemas de agricultura de precisión se considera como un medio para lograr una agricultura sostenible, un paso hacia el cual es inevitable para todos los países, especialmente los desarrollados, como resultado de los problemas ambientales y la provisión de seguridad alimentaria para la creciente población. Porque otros sistemas agrícolas como el tradicional y el orgánico pueden no brindar seguridad alimentaria a la población en crecimiento. Los expertos agrícolas de Jihad-e-Keshavarzi son uno de los factores que introducen este tipo de tecnologías a los agricultores y la actitud positiva de los expertos hacia los impactos de las tecnologías agrícolas de precisión juega un papel importante en la aceleración de su difusión. Los expertos de la provincia de Boushehr encontraron la conservación de aguas subterráneas y superficiales, el manejo de malezas, la conservación de recursos energéticos y el manejo de plagas como los impactos ambientales más importantes de las tecnologías agrícolas de precisión. El impacto social más significativo de este sistema agrícola se refiere al desarrollo de las áreas rurales. Los impactos técnicos más importantes de las tecnologías agrícolas de precisión son el aumento de la productividad, el aumento de la calidad de los productos y la mejora de las condiciones agrícolas. Los expertos definieron los impactos económicos más importantes de estas tecnologías como el aumento de los ingresos, la mejora y la prosperidad del estado agrícola. Las actitudes de los expertos indican su visión positiva hacia este tipo de impactos. Por lo tanto, los planificadores gubernamentales en agricultura deben tener en cuenta la implementación de la agricultura de precisión en los planes de desarrollo agrícola. Además, deben tratar de considerar servicios de apoyo para tener acceso a tecnologías agrícolas de precisión, activando la extensión y capacitación, La actitud de comportamiento tiene el mayor efecto sobre la actitud hacia los impactos. Si bien el conocimiento y la conciencia se consideran una introducción para crear una actitud, los resultados de este estudio mostraron que el conocimiento de la agricultura de precisión no tuvo ningún efecto sobre la actitud del comportamiento. Una de sus razones puede deberse al desconocimiento de esta tecnología, por lo que es necesario incrementar el conocimiento y la información de los expertos en este campo. Por lo tanto, podrán aplicarlo en las granjas después de obtener la información requerida y alentar a los agricultores a adoptar tales tecnologías al proporcionar las condiciones e instalaciones necesarias. Se sugiere crear grupos de aprendizaje y proporcionar condiciones para la discusión grupal para facilitar el aprendizaje de la agricultura de precisión. La falta de investigaciones en este campo en Irán es otra razón de la falta de conocimiento de los expertos. Los investigadores deben aplicar los conocimientos teóricos de la agricultura de precisión en el país de Irán. También es esencial aprobar los créditos necesarios para la investigación y alentar a los investigadores a planificar y aplicar los planes pertinentes en agricultura de precisión. La utilidad percibida se considera la variable más significativa que afecta la actitud conductual y el segundo factor que influye en la actitud de las tecnologías de agricultura de precisión. Por lo tanto, la educación debería centrarse en justificar la utilidad percibida de esas tecnologías a los expertos, de modo que la enseñanza de la agricultura de precisión en las universidades debería considerarse más. Se sugiere planificar cursos de capacitación en servicio para expertos, formar una red de expertos, profesores y técnicos, desarrollar y realizar programas de pasantías para expertos. Por último, los funcionarios y los responsables políticos pertinentes pueden establecer una planificación estratégica basada en los resultados de este estudio para difundir este tipo de tecnologías.

Leer más