Agricultura de precisión y sostenibilidad

Agricultura de precisión detección remota y verificación en tierra

La teledetección para la agricultura se puede definir simplemente como «observar un campo o cultivo sin tocarlo». Aunque la detección remota puede ser tan simple como una «inspección del parabrisas» de un campo desde un camión a 55 mph, la historia de la detección remota moderna comenzó cuando se tomaron fotografías en blanco y negro del paisaje por primera vez desde el aire. El primer esfuerzo organizado para adquirir fotografías aéreas apareció a fines de la década de 1930 por parte del Departamento del Ejército. Finalmente, el Servicio de Conservación y Estabilización Agrícola adoptó la tecnología y comenzó a recopilar fotografías indexadas del paisaje con fines agrícolas. Muchas de estas fotografías todavía están disponibles a través de Farm Service Agency. La teledetección, en la actualidad, incorpora nuevas tecnologías que brindan información cada vez más eficiente, completa, precisa y oportuna.

Las tecnologías de teledetección proporcionan una herramienta de diagnóstico que tiene al menos dos funciones importantes, así como muchos otros usos en el manejo de cultivos específico del sitio. La teledetección se puede utilizar para medir la reflectancia de la energía luminosa del dosel del cultivo, lo que puede ser útil para detectar el estrés de las plantas mientras aún hay tiempo para corregir el problema. Las imágenes o mapas creados con sensores remotos también brindan un método rápido para estimar la extensión de una característica importante de un cultivo o la ubicación de áreas de un campo que parecen tener características similares. Estas imágenes o mapas son útiles para desarrollar planes de exploración para el examen directo del suelo detectado o las condiciones de la planta y para desarrollar planes de tratamiento específicos para el sitio.

Al igual que los mapas de rendimiento, las imágenes de detección remota fomentan la investigación creativa de las prácticas de gestión a largo plazo. Las imágenes de detección remota proporcionan un método visual para comprender los efectos de los insumos gestionados, como los fertilizantes, y las prácticas culturales, como la labranza. También son útiles para comprender el impacto de factores ambientales como el drenaje o las infestaciones de plagas. A diferencia de los mapas de rendimiento, que afectan solo las decisiones futuras, las imágenes de detección remota pueden recopilarse varias veces durante la temporada de crecimiento y permiten tomar decisiones de manejo oportunas para corregir problemas o deficiencias en el cultivo actual. Por esta razón, la tecnología de teledetección agrega una dimensión importante al manejo de cultivos específico del sitio.

(abre en una nueva ventana)Fotografías aéreas históricas
Las fotografías aéreas históricas pueden proporcionar información valiosa sobre el estado actual de la tierra. Estas fotografías suelen ser en blanco y negro y constituyen un buen ejemplo de la forma más sencilla de teledetección. Cada vez es más común poner un valor en estos registros históricos e intercambiarlos como si fueran parte de la tierra a medida que la tierra cambia de manos. Las fotografías pueden ayudar a los propietarios a visualizar las diferencias históricas en el uso de la tierra que ocurrieron años o décadas antes.

1939 fotografía aérea
Fotografía de 1939.

1956 fotografía aérea
Fotografía de 1956.

1968 fotografía aérea
Fotografía de 1968.

1982 fotografía aérea
Fotografía de 1982.

Fotografía aérea de 1990
Fotografía de 1990.

Una imagen digital detectada a distancia
Figura 1
Una imagen digital de detección remota, arriba, que indica la variabilidad en el pH del suelo en un campo refleja las diferencias en las prácticas agrícolas a lo largo de los años, como se muestra en esta serie de fotografías aéreas históricas.

Un ejemplo principal de la importancia de estos registros está relacionado con la consolidación de tierras agrícolas. El tamaño promedio de los campos ha crecido en las últimas décadas al consolidar los campos que alguna vez se cultivaron por separado en campos más grandes que son más eficientes de administrar. Cuando se consolidan los pastizales adyacentes y los campos labrados, esas áreas que alguna vez estuvieron separadas no se comportan de la misma manera bajo la nueva estrategia de manejo uniforme. El resultado es un campo grande con cambios abruptos en las características del suelo o la productividad en la unión de los límites de campo antiguos y de otro modo invisibles. Una fotografía antigua puede proporcionar información que se puede utilizar para comprender esa variabilidad.

En la siguiente serie de fotografías (Figura 1), el mapa de pH de un campo de aproximadamente 80 acres tiene un patrón distinto que parece haberse desarrollado al cultivar el campo más grande como varios campos más pequeños. El mapa de 1990 muestra claramente una línea de árboles que separa el campo en dos partes distintas. La foto de 1982 proporciona aún más pistas sobre algunas de las diferencias en el pH. Aquí, la evidencia de erosión por barrancos desde el extremo sur del campo hasta el extremo norte también parece haber sido al menos parcialmente responsable de la variabilidad en el pH debido a la erosión y la deposición y apoya la idea de que se ha producido un movimiento dramático de la capa superficial del suelo dentro del campo. También es evidente que este campo alguna vez fue parte de un campo más grande que se extendía hacia el oeste y que una granja en la esquina suroeste ha causado al menos una variabilidad menor en el mapa de pH. La foto de 1968 proporciona pocas o ninguna pista adicional sobre la variabilidad en el pH, pero demuestra claramente que las prácticas pasadas causaron diferencias en el dosel del cultivo actual y que el gran campo de la foto de 1982 se había dividido previamente como está ahora. Finalmente, las fotos de 1956 y 1939 proporcionan evidencia de que las diferencias en el pH de hoy son el resultado de las diferencias en las prácticas agrícolas de hace medio siglo.

Las fotografías aéreas antiguas también pueden recordar o informar a un administrador sobre la eliminación de granjas antiguas, estanques poco profundos, vías de ferrocarril y cercas. Estas características a menudo indican áreas de marcadas diferencias en la gestión pasada. Áreas donde las prácticas de manejo, incluidas las cantidades y tipos de cal, fertilizantes, estiércol y labranza, pueden seguir causando variabilidad en el crecimiento de los cultivos durante muchos años después de la consolidación de los campos. Fotografías aéreas históricas están disponibles en las oficinas locales de la Agencia de Servicios Agrícolas. A menudo se encuentran disponibles fotografías que datan de la década de 1950 y algunas que se remontan a fines de la década de 1930.

(abre en una nueva ventana)Fotografías aéreas e imágenes digitales modernas
Las fotografías aéreas de archivo son útiles para detectar posibles efectos de prácticas de gestión histórica. Las fotografías aéreas modernas del cultivo actual pueden ayudar a detectar la variabilidad debido a prácticas de manejo más recientes y problemas que incluyen drenaje deficiente, malezas, insectos, nematodos y enfermedades.

La mayor parte de los análisis de datos de detección remota se realizan en una computadora con imágenes digitales. Las imágenes se pueden adquirir digitalizando fotografías de cámaras de película o directamente con cámaras digitales y otros instrumentos electrónicos especializados. Una fotografía que ha sido digitalizada está representada por cientos de miles o millones de puntos llamados píxeles (elementos de imagen) y se almacena electrónicamente. Las cámaras digitales registran la reflectancia con conjuntos de pequeños sensores y almacenan imágenes directamente, sin el uso de película fotográfica. Se pueden utilizar filtros de luz, sensores electrónicos avanzados y películas especiales para recolectar energía luminosa invisible para el ojo humano y de porciones específicas del espectro electromagnético (EM). A través de estas tecnologías, La teledetección con imágenes digitales puede proporcionar mucha más información diferente a la que pueden proporcionar las fotografías en blanco y negro. Es importante tener un conocimiento básico de la luz para apreciar la variedad de tecnologías utilizadas en la teledetección.

(abre en una nueva ventana)Espectro electromagnético

Figura 2
La luz visible en el extremo rojo del espectro tiene una longitud de onda más larga (frecuencia más baja) que la luz en el extremo violeta.

La luz visible es energía electromagnética, que viaja en forma de ondas. Los colores que vemos se deben a diferencias en la frecuencia o longitud de onda de esta energía electromagnética (Figura 2). Los colores de un arco iris son un ejemplo evidente de luz de la región visible del espectro electromagnético; estos colores son rojo, naranja, amarillo, verde, azul y violeta. La luz roja tiene la longitud de onda más larga de todas las luces visibles. Las longitudes de onda a menudo se expresan en nanómetros (nm), una unidad de medida equivalente a la mil millonésima parte de un metro. La parte visible del espectro varía desde aproximadamente 700 nanómetros (el extremo rojo de la parte visible del espectro) hasta 400 nanómetros (el extremo violeta de la parte visible del espectro).

La luz visible es solo una pequeña parte del espectro electromagnético (Figura 3) que puede ser útil para analizar suelos y cultivos. La luz infrarroja, caracterizada por longitudes de onda mayores que las del espectro visible, varía entre 700 nm y 100.000 nm. En particular, la luz infrarroja reflejada, que varía de 700 nm a 3000 nm, es útil en la teledetección para detectar el estrés en las plantas en crecimiento. Algunas regiones adyacentes del espectro también tienen importancia en la teledetección. Estos incluyen las longitudes de onda más largas de la región de microondas de 1 mm a 1 my las longitudes de onda más cortas de la región ultravioleta, con longitudes de onda más cortas que el extremo violeta del espectro visible (400 nm). Más pequeños aún son los rayos X y otras formas de radiación. Las longitudes de onda más largas que las de la región de microondas se utilizan para transmisiones de radio.

La luz visible es una banda relativamente estrecha en el espectro electromagnético.Figura 3
La luz visible es una banda relativamente estrecha en el espectro electromagnético (EM). La teledetección mide la reflectancia de la radiación EM tanto dentro como fuera del rango visible.

(abre en una nueva ventana)Propiedades de reflectancia del suelo, el agua y las plantas.
Para la mayoría de las aplicaciones, las cámaras e instrumentos similares dependen de la energía del sol para iluminar la superficie a fotografiar. La luz se transmite, absorbe o refleja según las propiedades de los materiales que incide. Eventualmente, toda la luz es absorbida por algún objeto o reflejada. La energía luminosa que se absorbe se convierte en calor. La luz reflejada se puede registrar mediante una película fotográfica o sensores electrónicos.

Cuando la energía del sol incide sobre una superficie, la cantidad y el tipo de reflectancia depende de la composición de la superficie que incide y del ángulo de incidencia. Por ejemplo, el suelo de color claro refleja más luz solar que el suelo oscuro. Por el contrario, el suelo oscuro absorbe más energía de la luz solar y se calienta más rápidamente. Los cuerpos de agua tienen características de reflectancia diferentes a las del suelo desnudo, y la calidad de la reflectancia varía con la profundidad y la turbidez del agua.

La reflectancia total de la superficie de las plantas varía a lo largo de la temporada y durante el día a medida que cambia la energía solar. Sin embargo, la información más útil la proporcionan las diferencias de reflectancia entre las diversas porciones del espectro EM. Estas diferencias de reflectancia a lo largo de todo el espectro EM se pueden utilizar para distinguir la vegetación sana de la vegetación necrótica o estresada. Varios factores, como la sequía, la deficiencia nutricional, las enfermedades, los nematodos y las lesiones por herbicidas pueden reducir o alterar el contenido de clorofila y otras sustancias que afectan la reflectancia de la vegetación.

La clorofila absorbe la mayor parte de la luz de las porciones roja y azul del espectro visible, pero refleja las longitudes de onda verdes; por lo tanto, las hojas aparecen verdes cuando el contenido de clorofila es alto. Cuando las hojas pierden clorofila, hay menos absorción y proporcionalmente más reflejo de las longitudes de onda rojas, lo que hace que las hojas parezcan rojas o amarillas (el amarillo es una combinación de longitudes de onda rojas y verdes). La estructura interna de las hojas sanas también refleja la luz infrarroja cercana; por lo tanto, la reflectancia del infrarrojo cercano es una excelente medida de la salud de la vegetación de los cultivos.

Algunas veces se utilizan técnicas de filtrado para capturar la luz reflejada de una o más porciones específicas del espectro que están altamente correlacionadas con características importantes de la planta. Las proporciones de reflectancia de entre estos tipos específicos de luz pueden servir como «huellas digitales o firmas» para detectar características del suelo, el agua y los cultivos importantes en el manejo del cultivo. Por lo tanto, los colores o sombras en un mapa desarrollado a partir de datos de detección remota podrían representar colores verdaderos o colores falsos. Los colores falsos proporcionan una representación visual de propiedades de reflectancia específicas medidas directamente o categorías de ciertas combinaciones de propiedades de reflectancia que representan una alta probabilidad de una condición particular, como el estrés causado por deficiencias de nutrientes, enfermedades o sequía.

(abre en una nueva ventana)Recopilación de imágenes de detección remota
En la mayoría de los casos, el proceso de recopilación y procesamiento de datos de detección remota se adapta mejor a organizaciones comerciales o especialistas que pueden permitirse invertir el tiempo y los recursos financieros necesarios para desarrollar técnicas confiables para la recopilación de datos. Al distribuir los costos en un área grande o entre un gran número de granjas, las empresas comerciales pueden permitirse ofrecer imágenes utilizando la mejor tecnología disponible.

(abre en una nueva ventana)Tecnologías fotográficas y electrónicas especializadas
Photographic film is basically of two types — panchromatic and color. Panchromatic film, which is used to provide black-and-white images, is sensitive to visible light as well as infrared light up to 900 nm and ultraviolet light down to 300 nm. Normal color film consists of three layers sensitive to red, green and blue light and produces photographs that look normal to the eye. Color-infrared (CIR) film is also a three-layer film but is sensitive to infrared, red and green light. When processed, CIR film results in a «false color» image in which the infrared light is printed as red, red light is printed as green, and green vegetation appears blue. The remaining blue light often offers little useful information. Multiband photography uses multiple lenses and various combinations of films and filters to record simultaneous photographs of the landscape from several small or discrete spectral ranges.

Se utilizan varias tecnologías para recopilar datos de reflectancia de forma electrónica. La terminología utilizada para describir estas tecnologías a menudo incluye prefijos como multi e hiper para indicar aproximadamente cuántas bandas separadas de reflectancia se miden. El término multiespectral típicamente implica que se miden aproximadamente cuatro bandas relativamente anchas de reflectancia, mientras que el término hiperespectral generalmente implica que se miden algo del orden de 100 bandas de reflectancia relativamente estrechas.

Las cámaras digitales y los escáneres multiespectrales registran datos mediante el uso de dispositivos de carga acoplada (CCD). Las cámaras digitales utilizan una serie de CCD sensibles a varias porciones del espectro EM para proporcionar instantáneas del paisaje, mientras que los escáneres multiespectrales registran sucesivos barridos estrechos de luz a medida que el campo de visión del instrumento se mueve a través del paisaje. Los datos de reflectancia multiespectral se recopilan típicamente como tres o cuatro bandas espectrales en anchos de 10 a 100 nanómetros. Los filtros montados en lentes se utilizan para registrar por separado la energía luminosa de dos o tres porciones del espectro visible (luz roja, verde y azul), así como la luz infrarroja cercana. Los datos de reflectancia hiperespectral suelen incluir más de 100 bandas espectrales estrechas con anchos de banda muy estrechos y proporcionan una gran cantidad de información.

Los datos de reflectancia disponibles comercialmente se recopilan utilizando aviones de ala fija o satélites que proporcionan una plataforma para el equipo de detección. Los datos se indexan espacialmente para que se puedan generar imágenes georreferenciadas de un campo. La calidad o el valor de los datos de teledetección están relacionados con la resolución espectral, espacial y temporal.

La resolución espectral es el grado en que se separan las longitudes de onda de la luz en el espectro. Se utilizan varios tipos de sensores para recoger la luz reflejada de varias porciones del espectro EM. Una imagen en blanco y negro (escala de grises) tiene una resolución espectral baja porque está compuesta de luz de todo el espectro visible, pero los colores no se clasifican. Por el contrario, una imagen en color tiene una resolución espectral más alta. En la práctica, se utilizan filtros y sensores múltiples para recolectar luz de muchas porciones estrechas del espectro EM para proporcionar una alta resolución espectral.

La resolución espacial es la cantidad de detalle de una imagen. La diferencia entre una resolución espacial buena y mala se puede considerar como la capacidad de detectar objetos pequeños. Por ejemplo, un observador que mira una imagen con una resolución espacial deficiente puede apenas ser capaz de detectar la presencia de un vehículo en el paisaje, pero es posible que no pueda distinguir un tractor de un camión. El mismo observador que usa una imagen con alta resolución puede detectar características lo suficientemente pequeñas como para distinguir entre los dos objetos.

La resolución espacial de las imágenes obtenidas por teledetección suele ser de 2 a 4 metros por píxel, lo que suele ser adecuado para detectar características importantes de la superficie. Ocasionalmente, los aviones vuelan a altitudes más bajas para proporcionar una resolución más alta del orden de 0,5 metros por píxel. El ancho de la imagen o «huella» se estrecha con la altitud más baja, así como con el uso de lentes de zoom.

La resolución temporal es la diferencia de tiempo entre imágenes sucesivas. Las imágenes adquiridas con solo unos días de diferencia brindan la capacidad de detectar cambios en la reflectancia que pueden indicar la aparición de estrés en un cultivo. La resolución temporal está limitada por el número de veces que están programados los aviones o satélites para pasar sobre el paisaje.

La cobertura de nubes es una limitación tanto para los aviones de ala fija como para los satélites. Las nubes sobre el paisaje dan sombra a la superficie que se va a ver, cambiando las características de la luz incidente y reflejada y bloqueando una vista clara del paisaje. Por tanto, la resolución temporal también se reduce si no se pueden obtener buenas imágenes debido al mal tiempo.

(abre en una nueva ventana)Productos de teledetección disponibles comercialmente
Los tipos de productos comerciales disponibles para la teledetección varían considerablemente desde mapas de datos brutos hasta mapas que representan información específica. Por ejemplo, algunas empresas ofrecen productos que incluyen acceso en línea a imágenes sin procesar y herramientas de medición y análisis disponibles por separado. Los tamaños de imagen incluyen 1, 2, 3 y 6 millas cuadradas con resoluciones de 1, 4, 5, 10 y 15 metros, según el producto. Los tipos de imágenes incluyen infrarrojos en blanco y negro, en color y en color. La mayoría de estos productos se desarrollan a partir de datos existentes de menos de tres años. Otros productos pueden estar disponibles para una fecha futura y deben solicitarse con dos semanas de anticipación.

Algunas empresas ofrecen productos diseñados para proporcionar información específica sobre un cultivo o campo. Algunos de estos productos se basan en mediciones de reflectancia con poco o ningún procesamiento. En otros casos, los productos son estimaciones de una condición específica que se ha desarrollado aplicando fórmulas a medidas de reflectancia seleccionadas para estimar esa condición (Tabla 1).

Cuadro 1
Ejemplos de productos de teledetección disponibles comercialmente.

Productos y usos sugeridos

Brillo del
suelo Elaborar mapas de suelo o muestreo directo del suelo
Vigor o salud del cultivo
Varios usos

Cobertura de vegetación Decisiones de replantación
Contenido de clorofila
Gestión de nitrógeno
Predicción de rendimiento
Gestión general
La maleza se escapa del
manejo de la maleza
Estrés debido a
los déficits de humedad del manejo del riego del dosel
Residuos de cultivos
Evidencia de cumplimiento de las pautas de prevención de la erosión
En el Missouri Precision Agriculture Center se mantiene una lista de fuentes comerciales de datos de teledetección diseñados para la agricultura.(abre en una nueva ventana) (MPAC).

(abre en una nueva ventana)Interpretación de la imagen: Verificación terrestre y exploración dirigida
Las imágenes aéreas proporcionan una forma eficiente de monitorear el desarrollo de los cultivos, determinar la extensión de las áreas estresadas y detectar patrones debido a las prácticas de manejo en un campo. Debido a que los datos de teledetección promedian típicamente la reflectancia de un área relativamente grande que puede incluir varias plantas, la causa exacta de la variabilidad generalmente no está clara a partir de las imágenes únicamente. En la mayoría de los casos, solo la inspección manual desde el suelo puede proporcionar una explicación confiable de la variabilidad. La verificación en tierra es el acto de ir físicamente a un campo para determinar la causa de la variabilidad detectada en una imagen.

La exploración dirigida es otro beneficio de los datos de teledetección. Las imágenes impresas pueden proporcionar una guía para ubicar áreas específicas de interés dentro de un campo, pero si el campo es grande y carece de puntos de referencia internos, la exploración del campo aún puede ser un desafío en soja perforada a la altura de la cintura o en soja de 10 pies de altura. maíz. Hay software disponible que puede descargar imágenes «georreferenciadas» detectadas de forma remota en una computadora de mano. La computadora de mano equipada o conectada a un receptor GPS (sistema de posicionamiento global) portátil puede guiar los esfuerzos de exploración dirigidos.

En el área específica de interés, un fitopatólogo o agrónomo familiarizado con las técnicas de exploración puede observar las diferencias en el color de las hojas y los patrones de daño a las hojas y los tallos y tomar rápidamente una decisión informada sobre la causa probable del daño a una planta. Otros ejemplos de causas específicas de variación incluyen la población de plantas, el tamaño y el vigor de las plantas. Cuando se descartan diferencias en la fecha de siembra, la variedad, la tasa de siembra, la profundidad de siembra, las aplicaciones de herbicidas y fertilizantes, el análisis puede proceder a otros factores como las diferencias en el tipo de suelo, las propiedades físicas del suelo o el perfil del suelo y las características del drenaje. Las causas específicas de variación relacionadas con el suelo incluyen la profundidad de la capa superficial del suelo, la presencia de una cazuela de arcilla, un nivel freático encaramado, rayas de subsuelo arenoso o gravilloso, líneas de tejas o diferencias históricas en el estiércol dosis de aplicación de fertilizante o cal. Incluso si no se determina la causa de la diferencia, la información puede ser importante para futuras decisiones de gestión.

También se están desarrollando sensores montados en el tractor y en el equipo que miden la radiación electromagnética a medida que el equipo viaja a través del campo. Estos sensores en movimiento proporcionan un método alternativo para registrar las propiedades de reflectancia y ofrecen la posibilidad de realizar ajustes en tiempo real de las prácticas de gestión. Específicamente, se están utilizando radiómetros para medir el verdor del dosel en cultivos como el maíz para desarrollar un método para ajustar automáticamente las tasas de nitrógeno del revestimiento lateral durante la aplicación. Se están desarrollando sensores similares para detectar malezas para la aplicación selectiva de herbicidas y el daño de los insectos en la alfalfa para tomar decisiones sobre el manejo de plagas.

(abre en una nueva ventana)Resumen
Las tecnologías de teledetección proporcionan una herramienta importante para ayudar a la gestión de cultivos en sitios específicos. La teledetección tiene el potencial de proporcionar un análisis en tiempo real de los atributos de un cultivo en crecimiento que puede ayudar a tomar decisiones de manejo oportunas que afectan el resultado del cultivo actual. Sin embargo, al igual que otras tecnologías de agricultura de precisión, la información obtenida de la teledetección es más significativa cuando se combina con otros datos disponibles. Por esta razón, incluso las fotografías históricas pueden adquirir un nuevo valor.

La incorporación de la teledetección en sus actividades de gestión requiere disciplina y requerirá nuevas técnicas de gestión y habilidades técnicas. Para tener éxito, la teledetección debe ir acompañada de un buen programa de exploración convencional y los beneficios de las mejoras en la gestión deben superar el costo de la tecnología, así como el tiempo adicional dedicado a la gestión.

Leer más
Agricultura de precisión y sostenibilidad

16 innovadores de Animal AgTech que transforman la industria ganadera

Con la creciente demanda de los consumidores de un mejor bienestar animal y una mayor sostenibilidad en todo el sector ganadero, están surgiendo nuevas innovaciones disruptivas para permitir a los agricultores monitorear la salud de sus rebaños en tiempo real, prevenir brotes de enfermedades y optimizar la nutrición.

La Cumbre de Innovación Animal AgTech (San Francisco, 16 de marzo) identificó 16 empresas emergentes con tecnologías innovadoras para apoyar una industria ganadera sostenible y eficiente, con soluciones que van desde el tratamiento sin antibióticos para la mastitis bovina, la tecnología de fagos genéticamente modificada, la IA, la máquina. visión, robótica de gallineros y monitoreo autónomo de ganado.

Las empresas emergentes en el centro de atención en Animal AgTech incluyen:

Armenta (Israel) ha desarrollado el primer tratamiento sin antibióticos para la mastitis bovina utilizando tecnología de pulso acústico (APT). La mastitis causa pérdidas anuales de más de $ 6 mil millones en los Estados Unidos y Europa. Las vacas infectadas tratadas con APT han mostrado tasas de curación del 70% y, en consecuencia, un aumento del 10% en la producción de leche. La implementación de APT aumenta la rentabilidad de los agricultores, mejorando la salud del hato y el bienestar de las vacas.

BinSentry (Canadá) es una empresa de IoT agrícola que resuelve un problema de 40 años en la industria de alimentos para animales: el monitoreo confiable del inventario de los contenedores de alimento en la granja. En una misión para «retirar el mazo», el sensor de IoT de BinSentry permite a las fábricas de alimentos y a los integradores verticales lograr ahorros de costos significativos al permitir aumentos dramáticos en la eficiencia operativa.

CattleEye (Irlanda) ha creado la primera plataforma autónoma de monitoreo de ganado del mundo que mejora la vida de los agricultores y su ganado y revoluciona la cadena de suministro de proteínas. Su plataforma de inteligencia artificial de aprendizaje profundo está diseñada para interpretar imágenes visuales del ganado de cámaras web y extraer información valiosa sobre esas vacas.

Faromatics (España) emplea robótica, inteligencia artificial y big data para aumentar simultáneamente el bienestar animal y la productividad de la granja en la producción animal intensiva. Su producto estrella, el ChickenBoy, es el primer robot suspendido en el techo del mundo que monitorea las condiciones ambientales, la salud y el bienestar y la función del equipo para pollos de engorde.

FarrPro (EE. UU.) Se fundó para cambiar la forma en que el mundo cría carne de cerdo. Su plataforma Haven reduce la mortalidad de los lechones, ahorra energía y mejora el bienestar de las cerdas al crear un entorno microclimático para que los lechones se mantengan seguros, cálidos y saludables. The Haven es el primer hito en la hoja de ruta de FarrPro para llevar trazabilidad y automatización a la industria porcina; proporcionando la información y el control necesarios para prevenir brotes de enfermedades, desarrollar rápidamente vacunas y salvaguardar la cadena de suministro porcina.

General Probiotics (EE. UU.) Desarrolla robots celulares innovadores y probióticos antimicrobianos que eliminan los patógenos dañinos en el ganado, permiten la producción de alimentos seguros y reducen la dependencia actual de los antibióticos. Su competencia principal es la ingeniería precisa de probióticos avanzados utilizando biología sintética e inteligencia artificial.

H2Oalert (Países Bajos) es el primer sistema de gestión de control de agua en tiempo real de IoT inalámbrico exclusivo para ganado lechero y de carne. La calidad y cantidad del agua potable del ganado se comprueba en tiempo real, 24 horas al día, 7 días a la semana, para detectar contaminación y posibles averías en el suministro de agua. De esta manera, el sistema H2Oalert y los datos obtenidos darán como resultado una contribución directa al bienestar animal, la producción de leche y carne.

Hencol (Suecia) presenta el siguiente nivel de la ganadería de precisión con sus algoritmos de big data e inteligencia artificial que permiten brindar a sus clientes un sistema de soporte de decisiones optimizado en tiempo real y accesible desde cualquier lugar a través de un teléfono inteligente, tableta o PC. Funciona como una solución independiente, además de estar integrado en otros sistemas o plataformas Agri a través de API. Permite la digitalización de toda la cadena de valor con importantes beneficios para todos los actores involucrados.

Jaguza Tech (Uganda) utiliza sensores, ciencia de datos y aprendizaje automático para mejorar los aspectos centrales de las operaciones agrícolas para que sean más eficientes, productivas y sostenibles. Jaguza es un sistema de gestión de ganado fuera de línea y basado en IoT en la nube que cuenta con monitoreo de salud animal y grabaciones de sensores de IoT, sistemas de administración de granjas, identificación de ganado animal, así como también utiliza etiquetas inteligentes para animales y lecturas de códigos QR a través de tecnologías inalámbricas.

Moonsyst (Hungría) es un sistema de seguimiento inteligente para los productores de carne y leche progresivos. Recopila diferentes parámetros del ganado, ayudando a los ganaderos con datos en tiempo real a aumentar la productividad y detectar enfermedades, estrés y calor.

Nextbiotics (EE. UU.) Tiene el objetivo de aprovechar las herramientas de biología sintética de vanguardia y la tecnología de bacteriófagos para brindar soluciones únicas a la crisis de resistencia a los antibióticos. Ofrece soluciones para destruir bacterias patógenas (malas). Su primer producto es un aditivo alimentario para los productores de animales para mejorar la nutrición animal y reducir significativamente el uso de antibióticos.

Nutrivert (EE. UU.) Ha descubierto que los antibióticos reducen los costos de los productores de una manera que en realidad no requiere eficacia antibacteriana. Ahora está desarrollando promotores de crecimiento no antibacterianos patentados para productores de ganado de todo el mundo.

Roper (EE. UU.) Está revolucionando la producción de carne de vacuno con una etiqueta auricular GPS y una aplicación móvil complementaria que funciona con energía solar. La tecnología única de Roper proporciona geolocalización y monitoreo de la salud del ganado en los pastos, lo que permite a los productores reducir el tiempo de manejo en un 30% y maximizar la fertilidad y la nutrición, administrar el pasto de manera sostenible e identificar el ganado que está enfermo o angustiado.

Simple Ag Solutions (EE.UU.) es una empresa de software como servicio B2B que proporciona el puente entre la salud animal y la producción. Su plataforma fue diseñada desde cero para que los productores de ganado y aves de corral administren el uso de antibióticos, optimicen la producción y faciliten las auditorías.

SomaDetect (Canadá) proporciona a los agricultores la información que necesitan para producir la mejor leche posible. La tecnología central de la compañía es un sensor en línea capaz de monitorear indicadores críticos del estado reproductivo, salud y componentes de la leche de vacas individuales. SomaDetect cierra la brecha de información al proporcionar datos de cada vaca en cada ordeño.

SwineTech (EE. UU.) Es una empresa de salud animal que aprovecha el reconocimiento de voz y la visión por computadora para ayudar a llevar la automatización y la trazabilidad a la industria porcina. El producto de SwineTech, SmartGuard, proporciona la automatización necesaria para prevenir con más éxito las muertes de lechones por aplastamiento y hambre, rastrear y facilitar la asistencia obstétrica y registrar información biométrica y de producción importante.

La Cumbre de Innovación Animal AgTech, que se celebra anualmente en San Francisco y Ámsterdam , es un evento internacional de creación de redes y acuerdos para productores de ganado lechero y avícola, proveedores de salud animal, empresas de piensos, fabricantes de ingredientes, empresas de tecnología, empresarios e inversores. Más de 350 líderes de tecnología agrícola animal se reunirán en San Francisco el 16 de marzo para conectar negocios e innovación para una industria saludable, sostenible y de alto bienestar.

Leer más
Agricultura de precisión y sostenibilidad

Cómo la tecnología de precisión puede ajustar la producción de carne

Para el ganadero de carne Robert Neill, la tecnología es fundamental para administrar su sistema en Upper Nisbet Farm, Jedburgh.

Él sabe exactamente lo que les está ocurriendo a sus animales y cómo se están desempeñando, lo que le permite comercializar sus acciones en el momento y la especificación adecuados para maximizar las ganancias.

El Sr. Neill maneja 326 vacas de parto en primavera de Limousin-cross en su unidad de cultivo de carne de 640ha en Scottish Borders.

Vea también: Informes, videos y fotos de los talleres Rethinking Cattle Performance

La mayoría de los animales se venden vivos a través del mercado de subastas local, y un puñado se vende a peso muerto a ABP. Tiene un suministro constante de clientes, y los carniceros compran de uno a tres de sus animales las 52 semanas del año.

carne de res en el interior© Billy Pix
Tiene un promedio de alrededor de 2.20p / kg de peso vivo para una carcasa de 600 kg y dice que el secreto para aprovechar al máximo su stock es producir lo que el mercado quiere.

Decisiones informadas
El Sr. Neill ha adoptado la agricultura de precisión para ayudarlo a tomar decisiones informadas y cree que esto es lo que todos los agricultores deben hacer.

“En Escocia, solo el 20% de las granjas de ganado tienen equipo de pesaje. Si no puede pesar animales, ¿cómo puede comercializar en el momento adecuado? » él pide.

becerro en cobertizo© Billy Pix
El Sr. Neill dice que usar EID en todos sus animales y tener un buen sistema de manejo y pesaje es fundamental para su empresa de carne.

“Las barras de pesaje y el cabezal de pesaje son lo más beneficioso para mi granja”, dijo el Sr. Neill en el evento Rethinking Cattle Performance de Farmers Weekly, patrocinado por Zoetis, ABP / Blade y Volac.

Pesa los animales en fase de finalización al menos cada 30 días para asegurarse de que no superen los 600 kg (640 kg menos 40 kg de relleno intestinal).

Los terneros también se pesan al destete cuando tienen unos seis meses de edad. Los que no pesen 200 kg al destete se separan y continúan con pienso lento.

Cajas de pesaje automático
El Sr. Neill también tiene dos cajas de pesaje automático situadas en los bebederos de agua, que mide el peso de sus animales en crecimiento y finalización cada vez que van a tomar algo.

También está esperando que se instalen cámaras encima de los bebederos para tomar puntuaciones de conformación al mismo tiempo.

“Pesar animales con regularidad me permite analizar las dietas y asegurarme de que funcionan, decidir cuándo comercializar los animales y cumplir con las especificaciones. Esto es agricultura de precisión ”, dijo.

caja de pesaje automática© Billy Pix
El Sr. Neill puede pesar 40 cabezas de ganado en 10 minutos por su cuenta y puede arrojar ganado de tres maneras. Tiene software que analiza resultados, hardware para lectura y etiquetas EID para identificación.

“Usamos Farmplan Cattle Manager para el mantenimiento de registros. Los pesos de los animales se importan del sistema de pesaje y los nacimientos y movimientos se notifican automáticamente al BCMS a través del programa ”.

Configuración del sistema
Su sistema de manipulación, que está diseñado para ser seguro y minimizar el estrés animal, tiene una puerta que guía lentamente a los animales a través del sistema. Ha instalado un aplastador de compresión en lugar de un aplastamiento con un yugo de cabeza para mantener el estrés animal al mínimo.

“No quiero ir a la cabeza del animal para leer la marca auricular, ya que les molesta.

«El lector de EID conectado al sistema significa que no tengo que hacerlo».

También tiene puertas accionadas por aire, lo que facilita la entrada y salida de existencias de la caja. También es más silencioso.

Explore más Know How
Visite nuestro centro Know How para obtener consejos prácticos sobre agricultura

Evaluación del desempeño de la carne
Costos
Todo el sistema le costó entre 10.000 y 15.000 libras esterlinas por el sistema de trituración y el sistema hidráulico, que se importaron de la Isla Sur de Nueva Zelanda, y 3.500 libras esterlinas por las barras de pesaje y el cabezal de pesaje.

“Si va a manipular existencias, necesita un buen sistema de pesaje. Si maneja mal a un animal, tiene un efecto dominó sobre la tasa de crecimiento.

“Nunca habrá más mano de obra en las granjas, por lo que es necesario pensar en eso al diseñar un sistema de manipulación”, dijo.

Cuando se pasa el stock a través del sistema de manipulación, el lector de EID situado en el lugar de unión recoge su etiqueta y le dará una ganancia diaria de peso vivo. También le informará detalles específicos del animal, como su fecha de nacimiento, problemas pasados, registros de medicamentos y si un animal se puede vender (teniendo en cuenta los períodos de retiro de carne de tratamientos anteriores).

alimentar ganado de carne© Billy Pix
Su sistema también está vinculado a una máquina etiquetadora que puede imprimir identificaciones de animales individuales. Esto ha resultado particularmente útil cuando se toman muestras de sangre de vacas, dijo el Sr. Neill.

«Esto ha acelerado el proceso y reduce el error humano», dijo.

El Sr. Neill dijo que antes de ir al mercado pesa y corta la espalda, el vientre y la cola de su ganado para que luzca lo mejor posible.

“Se necesitan cinco minutos para hacerlo. Se trata de marketing y ventas y tenemos que presentar mejor lo que vendemos ”, dijo.

Registrador de puntuación de condición corporal
El Sr. Neill también está probando un lector de bastón de puntuación de condición corporal para TRuTest y cree que poder registrar las puntuaciones de condición en el lado del pensador directamente al lector facilitará el ajuste.

“Acondicionamos a las vacas puntuadas unas tres veces durante el período de invierno y ajustamos la alimentación en consecuencia. El lector de bastón hará que esto sea más fácil de hacer, ya que puede escanear la etiqueta del animal y registrar el puntaje de condición en el lector de bastón al mismo tiempo «.

Identificación de animales
identificación de animales© Billy Pix
Sin embargo, la agricultura de precisión no significa gastar mucho dinero en pequeños equipos. Las rutinas básicas, como el uso de etiquetas de manejo y el registro de las iniciales del padre en las etiquetas, ayudan al Sr. Neill a tomar decisiones sobre la reproducción en el futuro.

“Utilizamos etiquetas de gestión codificadas por colores para facilitar el trabajo. Por ejemplo, los discos rojos resaltan las terneras que no queremos mantener como reemplazos y los discos azules se utilizan para los machos que no han sido castrados «.

Alimentación
El Sr. Neill está utilizando un carro alimentador Alltech Keenan con el sistema PACE adjunto. Esto le dice exactamente qué debe incluir en la dieta y cuánto tiempo debe mezclarse, para que sepa exactamente qué ganado se está alimentando. Luego, puede ajustar la dieta al vigilar de cerca el rendimiento de sus animales.

Richard Vecqueray de Evidence Based Veterinary Consultancy, quien habló en el evento, dijo que los agricultores tienen una serie de palancas que pueden utilizar para determinar el rendimiento del ganado de carne para ayudar a emparejar la genética de la granja con el mercado al que se dirige.

Dijo que para poder tirar correctamente de estas palancas, los agricultores deben saber:

Rendimiento actual en términos de condición corporal y aumento diario de peso vivo, porque esto proporciona una línea de base desde la cual mejorar.
El análisis exacto de los piensos de entrada, siendo el forraje el más variable.
«Solo midiendo a los animales y sabiendo exactamente qué se está alimentando, se puede ajustar el sistema».

Vecqueray agregó que se necesitaban más análisis de ensilaje para definir mejor las cargas de entrada.

“El uso de fórmulas informáticas con información deficiente [un análisis de ensilaje de NiR único] es una costosa pérdida de tiempo. El resultado probable de tal ejercicio es que le vendan algo completamente inapropiado, agregando costos innecesarios en una industria sin margen de sobra ”, dijo.

“Si solo realiza uno o dos análisis de ensilaje al año con NiR, que analiza el ensilaje observando el nivel de luz reflejada, no es probable que sea representativo del ensilaje que está alimentando.

“Si realmente desea ajustar y aumentar las tasas de crecimiento a una edad más temprana, es posible que desee invertir en más análisis de forrajes o en el estándar de oro, que es el análisis de química húmeda. La química húmeda es más cara, pero más precisa ”, dijo.

Objetivos para terminar las raciones
Tasas de crecimiento objetivo para animales en finalización

Animal de estructura grande (en ración durante 80-100 días): 1,5 kg / día
Animal de complexión media (en ración de 60 a 80 días): 1,4 kg / día
Animal de estructura pequeña (en ración de 0 a 60 días): 1,3 kg / día
Objetivo de ingestas y raciones para animales de engorde

Ingesta de materia seca (DMI): 2% del peso corporal
Materia seca: 30-60%
Proteína cruda: 12-15% (valores más altos para las razas británicas, valores más bajos para las continentales)
Energía: 12,2 MJ / kg DM ME (depende de la raza y la tasa de crecimiento deseada)
Grasa: <6% Almidón y azúcares: 33% Calcio: 0,6% Fibra larga: 6-8% (introducir gradualmente durante siete a 10 días hasta completar la ración de acabado)

Leer más
Agricultura de precisión y sostenibilidad

Crece el uso de drones en el control biológico de plagas

La utilización de drones en el control biológico de plagas, evitando el uso de agroquímicos, está creciendo en el mundo, según la consultora BayWa AG.

Sólo en Alemania, la cantidad de hectáreas tratadas con drones, se duplicó en 2019 en comparación con el año anterior.

Una de las plagas que se combate con mayor efectividad a través de los drones es el barrenador europeo del maíz.

Se estima que el 4% de la cosecha mundial de maíz, alrededor de 41 millones de toneladas, está siendo destruida por el barrenador europeo del maíz cada año, según BayWa AG.

Para combatirlo sin el uso de productos químicos, se esparcen con drones, controlados por GPS, los huevos de la avispa parásita (Trichogramma), un enemigo natural del barrenador europeo del maíz,

Los drones vuelan sobre el campo de acuerdo con una ruta predeterminada y, automáticamente, liberan cápsulas con los parásitos del barrenador.

Leer más
Agricultura de precisión y sostenibilidad

Agricultura de Precisión y Suelos

La agricultura de precisión no es un concepto nuevo con vistas a generar una nueva agricultura sostenible. Su puesta en marcha comenzó ya en la década de los noventa del siglo pasado, con la emergencia de nuevas tecnologías (GPS, SIG, sensores que estiman ciertas variables en tiempo real, imaginería satelital muy detallada, etc.) y herramientas matemáticas (como la geoestadística). Podemos señalar que tal aproximación ha sido más ampliamente aceptada en países del mundo anglosajón, tales como lo son EE.UU. y Australia, en donde ya existen algunos Institutos de investigación en esta materia. Sin embargo, no ha ocurrido lo mismo en Europa y otros continentes. Como veremos hoy, no es oro todo lo que reluce. Subyacen varios problemas, unos derivados de las propias limitaciones instrumentales, otros que devienen de su alto coste y finalmente están algunos de índole más mezquinas que también abordaremos. Desde un punto de vista edafológico o pedológico, de nuevo nos encontramos con la obsesión de los edafometras por desbancar del poder a los colegas de la edafología clásica y no siempre con razón, sino por mera ambición. La agricultura de precisión nace pues con vistas a aplicar todas las nuevas tecnologías al ámbito de la gestión del agro. Sin embargo, como su denominación en inglés explicita con toda claridad (“precision farming”), que su principal objetivo “debieran ser” las granjas o parcelas altamente productivas, pero no los territorios amplios y con más limitaciones a la hora de obtener generosas cosechas. Del mismo modo, sus altos costes y sofisticada tecnología impide que pueda utilizarse en numerosos países, ni falta que suele hacer “salvo excepciones”. Empero los susodichos edafometras pretenden engañar al personal cuando insisten en que tales perspectivas reemplazan otro tipo de productos y metodologías más clásicas. Con tal motivo, fusionan tres elementos distintos en un mismo paquete: (i) la susodicha agricultura de precisión, la cartografía digital de suelos (“digital soil mapping”) y (iii) ciertos productos derivados de la última que han convenido en llamarse mapeo predictivo digital (“predictive digital soil mapping”). Veamos pues tanto los pros como los contras, así como las ansias de poder que subyacen bajo esta iniciativa por parte de algunos colegas. ¡Mucho cuidado!.

Agricultura de Precisión. Fuente: Precision agriculture

research at the Centre is sponsored by New Holland SA.

Buscando por este vocablo en la Web en Español aparecen bastantes textos, pero a su vez pocos de ellos son críticos. Sin embargo el capítulo de Wikipedia es bastante ilustrativo y nos servirá tanto como punto de partida como de llegada a la meta. Eso sí, iremos implementando los pasajes que aquí recojo (todos los de la enciclopedia, para ser más explícitos) del material mentado con lo que no suele decirse al respecto. Veamos pues que aporta Wikipedia.

La agricultura de precisión es un concepto agronómico de gestión de parcelas agrícolas, basado en la existencia de variabilidad en campo. Requiere el uso de las tecnologías de Sistemas de Posicionamiento Global (GPS), sensores, satélites e imágenes aéreas junto con Sistemas de Información Geográfico (SIG) para estimar, evaluar y entender dichas variaciones. La información recolectada puede ser usada para evaluar con mayor precisión la densidad óptima de siembra, estimar fertilizantes y otras entradas necesarias, y predecir con más exactitud la producción de los cultivos.

Comentario 1: Como podéis observar, la implementación de un sistema de esta guisa requiere hacer uso de alta tecnología, lo cual demanda tanto cuantiosos recursos económicos, como una elevada cualificación técnica. Más aun, si se pretende aplicar a países pobres y en vías de desarrollo, en donde la adquisición y mantenimiento del instrumental adolece de graves dificultades…….. Pero nos referimos, no lo olvidemos a la mayor parte de los agricultores mundiales, no a unos pocos “escogidos” por la diosa fortuna de los países ricos. No obstante, tampoco aquí termina el asunto. Debemos reiterar hasta la saciedad que, por su naturaleza, se trata de gestionar parcelas de granjas de elevadísimo rendimientos (ya que de otro modo no puede justificarse tal dispendio). Por tanto, los servicios oficiales de la mayor parte de los estados a penas pueden ofrecer asesoramiento, con la salvedad de los que demanden los terratenientes más adinerados. Tal hecho exige que, entre el personal laboral del pedio debe haber algunos trabajadores de un nivel altamente cualificado tanto en agronomía, como en todo el instrumental comentado. Este último necesita ser actualizado con excesiva frecuencia, como resultado de la agresividad del mercado a la hora de vender nuevos productos, muchos de los cuales no son compatibles con los precedentes. Resumiendo, hoy por hoy la agricultura de precisión tan suelo puede implantarse por lo general en países ricos y en sus lares de mayor productividad, por lo que buena parte de la producción agropecuaria queda descartada. Continuemos con la narración de Wikipedia

La agricultura de precisión tiene como objeto optimizar la gestión de una parcela desde el punto de vista

1. Agronómica: ajuste de las prácticas de cultivo a las necesidades de la planta (ej: satisfacción de las necesidades de nitrógeno).

2. Mediombiental: reducción del impacto vinculado a la actividad agrícola (ej: limitaciones de la dispersión del nitrógeno).

3. Económico: aumento de la competitividad a través de una mayor eficacia de las prácticas (ej: mejora de la gestión del coste del estiércol nitrogenado).

Además, la agricultura de precisión pone a disposición del agricultor numerosas informaciones que pueden:

1. Constituir una memoria real del campo.

2. Ayudar a la toma de decisiones.

3. Ir en la dirección de las necesidades de rastreabilidad.

Comentario 2: Si nos fijamos en los tres primeros ítems se habla de optimizar la eficiencia que muestra este sistema tecnológico en el uso de agroquímicos, ya sean fertilizantes o pesticidas. De este modo, el agricultor ahorra “pasta” y el medio ambiente se contamina mucho menos. En principio podríamos decir que se trata de una de sus principales ventajas, y que no es baladí, por cuanto tal contaminación ha devenido en una pandemia global que pone en riesgo toda la biosfera. Ahora bien, por lo dicho ene. Comentario 1, lo que personalmente me pregunto es si en lugar de tanta sofisticación fuera del alcance de la mayoría de los productores agrícolas del planeta, no debiéramos investigar imperativamente en una generación de agroquímicos menos nocivos, asociados a una “verdadera agricultura” sustentable y basada en principios ecológicos que pudiera alcanzar a un mayor número de granjeros. Mantengo la opinión de que en un país desarrollado como España la mayor parte de los paisanos se volverían locos con tanta tecnología, y el precio….. sólo permisible, para las producciones y suelos de mayor calidad y no para la mayor parte de los terrenos de cultivo.

Agricultura de precisión Precision farming. Fuente: Mosti

Desde luego, no se puede negar a que tal tipo de gestión ayude a la toma de decisiones. Sin embargo muchas de ellas dependen de las fluctuaciones del mercado y no del modo en que se producen las cosechas. Sigamos pues con lo narrado por Wikipedia.

Podemos distinguir cuatro etapas en la implementación de técnicas de agricultura de precisión que tome en consideración la heterogeneidad espacial:

Puesta en evidencia de la heterogeneidad de los rendimientos sobre una parcela

El dominio del espacio de trabajo es una exigencia previa a esta nueva aproximación agrícola; se requiere este dominio tanto al nivel de las imágenes de satélite como al del parcelario: es la operación de georeferencia. Los datos del rendimiento pueden ser adquiridos por diferentes medios: captadores de rendimiento sobre cosechadora, cubierta vegetal o índice foliar por vía aérea o de satélite.

Caracterización de esta heterogeneidad

Los orígenes de la diversidad son múltiples: clima (granizo), suelo (textura, profundidad, contenido en nitrógeno), practicas de cultivo, malas hierbas, enfermedades. Los indicadores permanentes (esencialmente vinculados al suelo) informan al agricultor de los principales datos constantes del entorno. Los indicadores instantáneos le informan del estado del cultivo (desarrollo de enfermedades, estrés hídrico, estrés nitrogenado, daños provocado por las heladas). Las informaciones pueden llegar de estaciones meteorológicas, de captadores (conductividad eléctrica del suelo, detección a simple vista).

Comentario 3; Y aquí topamos con “la madre del cordero”. Por un lado debe realizarse previamente un relevamiento (inventario georeferenciado y/o cartografía) muy detallado de la parcela. Resulta necesario recordar aquí que se requieren conocer las propiedades del suelo a intervalos espaciales muy finos. Debido a que los mapas tradicionales no suelen ser muy aptos para alcanzar tal precisión, entra en juego la geoestadística de variables concretas a estimar, las cuales dependerán del tipo de suelo y cultivo. Los edafometras que son los que realizan tales mapas y principales valedores de tal tipo de gestión, suelen muestrear exclusivamente unas pocas variables, generalmente de los horizontes superficiales y como mucho a profundidades estándar, soslayando los horizontes profundos que son tan importantes como los superficiales. Estos “expertos en matemáticas” demandan la toma y análisis de una ingente cantidad de muestras previas a implementar el sistema, siendo la información sesgada y pobre desde muchos puntos de vista. Pueden alegar que los sensores (como los de humedad y temperatura) dan cuenta en tiempo real de las condiciones de humedad etc. Pero el suelo es muy heterogéneo, tanto en superficie como en profundidad, por lo que la parcela terminará repleta de estos artefactos, etc. Todo este trabajo requiere también que el agricultor disponga de una buena cantidad de “pasta” para contratar a tales profesionales. Si adicionalmente sopesamos la necesidad de un experto para identificar las plagas y malas hierbas (existentes o potenciales), habría que contratara también a fitopatólogos, malherbologos, etc. Vamos, como si las parcelas fuera el jardín de un palacio presidencial. Obviamente no suele llegarse a tal extremo pero…….. resulta evidente que todo este andamiaje queda fuera del alcance de la mayor parte de los agriculturas y de los productos alimentarios que se comercializan actualmente. Campo abonado para las multinacionales y prohibitivo en una buena parte de los países, e incluso la mayoría de los predios de los desarrollados.

Parcelas analizadas mediante agricultura de precisión

Fuente: Earth Observatory NASA

Toma de decisión

La actitud a adoptar ante la heterogeneidad descubierta puede estar basada en modelos de ayuda a la decisión (modelos agronómicos de simulación de los cultivos y modelos de preconización). Sin embargo, le corresponde al agricultor tomar la decisión final, en función del interés económico y del impacto sobre el medioambiente.

¡Vaya por dios!. El paisano también debe adquirir a la compra y manejo de sistemas expertos que le ayuden a tomar decisiones. Más que unos pocos técnicos lo que necesita la finca es edificar un Instituto y contratar a un buen número de investigadores y personal técnico cualificado, a no ser que se deje aconsejar por alguna multinacional que………. ¿Le dejarían estos tomar una decisión que no correspondiera a la de sus propios intereses?

Puesta en marcha de las prácticas para paliar a estas diversidades

Las nuevas tecnologías de la información (NTIC) permiten la modulación de las operaciones de cultivo dentro de la parcela, incrementando la fiabilidad agronómica y facilitando esta posibilidad al agricultor. La puesta en práctica de las decisiones de modulación necesita material agrícola apropiado. Hablamos de tecnología agrícola de índices variables (ejemplo de modulación: siembra a densidad variable, aplicación de nitrógeno, aplicación de productos fitosanitarios). La puesta en marcha de la agricultura de precisión necesita los instrumentos siguientes:

1. Sistema de posicionamiento (por ejemplo el receptor GPS que utiliza las transmisiones por satélite para determinar una posición exacta sobre la tierra);

2. Sistemas de información geográfica (SIG): software que ayuda a transformar todos los datos en mapas topográficos inteligibles;

3. Material agrícola que utiliza la tecnología de los índices variables (sembradora).

Maquinaria ligera!!!!!! Para agricultura de Precisión

Fuente DBU

Comentario 4: Adelantemos que lo más económico será adquirir los GPS. Es cierto que las imágenes satelitales comienzan a ser de libre acceso, pero también lo es que con vistas a introducirlas en un SIG tiene que comprarse este y saber interpretar aquellas. Los últimos no son tan económicos, y desde luego su utilización requiere un adiestramiento intenso y prolongado, inundándose el marcado cada año de nuevos productos y desechando muy pronto los viejos (pocos años) que ya no son aptos para integrar toda la información que reclama la agricultura de precisión. De nuevo, el negocio sería para las multinacionales o consultorías locales altamente cualificadas, todo ello pagado por un agricultor adinerado, por supuesto. Otra alternativa es que el dueño tenga una familia más bien numerosa y que todos ellos vayan a una Escuela de Ingeniería Avícola Y/o facultad de agronomía, para luego retornar a la finca de papá a resolverle el lío en que se ha metido.

Sistemas de medición sobre cultivo, particularmente nuevas herramientas da carácter no destructivo para manejo en campo, lo cual permite la obtención de variable asiociadas a calidad y rendimiento del cultivo durante su desarrollo. un ejemplo de esto lo constituye las tecnologías de evaluación de espectroscopía en el infrarrojo cercano, (NIR), por sus siglas en inglés.

Comentario 4: Sin comentarios (jajajaja)

Situación actual de la agricultura de precisión

La utilización de las técnicas de la agricultura de precisión presentan los problemas siguientes:

1. Acceso a la información limitada (equipo informático, conexión a Internet a en las zonas rurales)

2. Oferta reducida en torno a las nuevas tecnologías (captadores de rendimiento, GPS)

3. Falta de compatibilidad entre los materiales existentes (necesidades de normas comunes para el intercambio de datos)

4. Opciones limitadas en instrumentos de ayuda la decisión adaptados al intra-parcelario

5. Necesidad de tiempo para la puesta en evidencia de las variaciones (varios años)

6. Coste de puesta en marcha de las modulaciones

7. Barreras psicológicas

Cápsula tipo espacial en maquinaria pesada para agricultura

de precisión. Fuente: Living on Earth

Comentario 5: ¿Hace falta añadir alguna reflexión adicional?. Quizás si, en lo que se refiere a las barreras psicológicas. ¿Y de las económicas? ¿Y de la cualificación?……………

Estas técnicas son cada vez más utilizadas en EE.UU., y apenas empiezan a aparecer en el mercado europeo. La agricultura de precisión es una vía cada vez más explorada, porque permite optimizar los rendimientos, administrar mejor los costes de producción y limitar el impacto de ciertas poluciones. El principio de la agricultura de precisión es aportar la buena dosis, en el buen lugar y en el momento adecuado.

No obstante, los detractores sostienen que todavía no se ha demostrado el interés económico de la agricultura de precisión. El coste de los equipos informáticos y del software SIG, asociado con precio de un GPS y de un captador de rendimiento se acerca a los 15.000 euros. Esto corresponde al importe que debe desembolsar un agricultor para adquirir el material necesario para realizar el estudio de las diversidades sobre las tierras de su explotación. Además, la puesta en marcha de la modulación necesita datos muy costosos como fotos aéreas o de satélite. Por fin, el beneficio ambiental es difícilmente medible. En efecto, si uno de los objetivos puede ser disminuir la dosis en nitrógeno sobre una zona a rendimiento débil, el riesgo es aumentarle en una zona a rendimiento fuerte, con el fin de optimizar la productividad; esto puede implicar, por ejemplo, necesidades más importantes en productos fitosanitarios. Por otra parte, algunos consideran que el control del desarrollo de las culturas por avión no constituye un beneficio de un punto de vista ambiental.

Comentario 6: ¿15 mil Euros?. ¡Pues va a ser que no!. ¿Y el precio de la cartografía geoestadística, asesoramiento técnico altamente cualificado, reemplazo de los sensores que se deterioren, nuevos softwares, imaginería satelital, etc., etc., etc.,? ¡Menos lobos caperucita!

La aplicación de conceptos de agricultura de precisión usualmente se considera relativo a la agricultura sostenible. Esta pretende evitar la aplicación de las mismas prácticas a un cultivo, sin tener en cuenta las condiciones locales de suelo y clima y puede ayudar a evaluar situaciones locales de enfermedad.

Comentario seis: Ya estamos con el vocablo de marras, la agricultura sustentable. Como ocurre con el caso del cambio climático, en aras de la sustentabilidad, se nos quieren vender todo tipo de tonterías. Reitero que la agricultura de precisión no lo es en contextos muy concretos. Empero a nivel regional, y más aun nacional, no soluciona ningún problema de sostenibilidad. Fijaros en algunas de las fotos a cerca de la maquinaria pesada que suele ir asociada (compactación y/o degradación física del suelo) y la cabina repleta de artilugios del agricultor (que necesita saber más que muchos investigadores como yo). En el mejor de los casos, contaminarán menos los agricultores ricos. Y eso suponiendo que soslayemos la cantidad de basura electrónica y que el rendimiento de los cultivos sea elevadísimo.

La agricultura de precisión puede ser usada para mejorar un campo o administrar un cultivo desde diferentes perspectivas:

1. Perspectiva agronómica: ajuste de prácticas culturales para tomar en cuenta las necesidades reales del cultivo (e.g., mejores manejos de la fertilización)

2. Perspectiva técnica: mejor administración del tiempo a nivel de cultivo (e.g. planificación de actividades agrícolas)

3. Perspectiva ambiental: reducción de impactos agrícolas (e.g. mejor estimación de necesidades en nitrógeno implica menos nitrógeno liberado al ambiente)

4. Perspectiva económica: incremento en el producto de salida o reducción de insumos, incremento de la eficiencia (e.g. bajos costos de fertilización con nitrógeno)

5. Otros beneficios para el agricultor son tener una historia de sus prácticas agrícolas y sus resultados, ayudarlo en la toma de decisiones y en el seguimiento de exigencias (como las que se requieren cada vez más en los países desarrollados).

Véase también

Cronología de las tecnologías de la agricultura y alimentación

Sistemas de Información Geográfica

Enlaces externos

Agricultura de Precisión

Agricultura de Precisión Progap INIA Chile

Obtenido de “http://es.wikipedia.org/wiki/Agricultura_de_precisi%C3%B3n“

Comentarios finales: A mi me gustaría saber si este tipo de discurso, muy en boga actualmente, procede de mentes mal intencionadas, de personajes que viven en el limbo (desde luego no en la realidad terrenal), de “Alicia en el País” de las Maravillas, o de intereses empresariales y colegiales más oscuros: hablamos del sector duro de los edafometras, entre otros. Lo más desagradable es que este colectivo va a aplicar ciertas técnicas a análisis territoriales de escala global (gracias a los generosos fondos de la Fundación de Belinda y Billy Gates), alegando que los mapas de suelos convencionales no son útiles y con su cartografía lograrán paliar parte de los males del agro tercermundista. Jajajajaja. Ya hablaremos del tema tras tocar la cartografía o mapeo digital de suelos, etc. Y lo peor de todo es que si no se frenan sus artimañas frontalmente, terminarán por destruir la pedología o edafología institucionalizada ¿verdad McB?. Reitero, por enésima vez, que se trata de una gestión adecuada para situaciones muy concretas. Sin embargo, los problemas de solucionar la producción mundial de alimentos pasa por otros caminos muy lejanos por el emprendido por los “apolo”getas” de los países ricos. Eso sí, si un colega intenta publicar en una revista de prestigio algo más racional pero económico, seguro que tendrá mayores dificultades que esta banda, ya que “la tecnología viste mucho”. Tampoco nos olvidemos que los adalides de esta propuesta se han encaramado a la cabeza de las editoriales de varias de las revistas más prestigiosas del mundo en la ciencia del suelo. Y por eso…… la agricultura de precisión la venden como si fuera maná caído del cielo. Falacia total.

Leer más
Agricultura de precisión y sostenibilidad

Agricultura de precisión para el desarrollo una revolución digital

La sociedad depende cada vez más de la tecnología. Sin embargo, no todos tienen el mismo acceso. Según el Foro Económico Mundial (WEF), las personas en los países en desarrollo corren el riesgo de quedarse atrás durante la revolución digital en curso. WEF insiste en que la agricultura digital puede mejorar sustancialmente la vida de los agricultores a largo plazo, ya que el acceso a la información les permitirá sostener sus negocios y seguir siendo autosuficientes. La agricultura de precisión para el desarrollo lo está haciendo posible.

Acceso a la información y la experiencia
En los países en desarrollo, la agricultura sigue siendo la principal fuente de ingresos para hasta el 90% de la población . Sin embargo, muchos pequeños agricultores dependen de métodos agrícolas tradicionales, lo que resulta en prácticas ineficientes e insostenibles. Existe una necesidad urgente de que los agricultores adopten sistemas de producción agrícola favorables al desarrollo que les permitan aumentar los rendimientos y, en última instancia, sus ingresos.

Uno de los mayores problemas que enfrentan los agricultores es la falta de acceso al conocimiento que les permitirá mejorar sus operaciones existentes. En los países desarrollados, los agricultores pueden invertir en tecnologías de agricultura de precisión que les brinden una solución personalizada de acuerdo con las condiciones locales. En los países en desarrollo, los pequeños agricultores no tienen los medios para acceder a estos recursos de alta tecnología. La agricultura de precisión para el desarrollo utiliza los últimos avances en agricultura digital para ayudar a los pequeños agricultores a mejorar sus prácticas agrícolas existentes.

Agricultura digital y soluciones móviles
Precision Agriculture for Development (PAD) es una organización sin fines de lucro que ofrece asesoramiento agrícola gratuito sobre cultivos específicos a millones de agricultores a través de teléfonos móviles. El enfoque de la organización combina el uso de herramientas como el análisis de suelos y la fotografía con drones con la investigación de Big Data y Machine Learning. PAD opera actualmente en Bangladesh, Etiopía, India, Kenia, Pakistán, Ruanda, Uganda y Zambia.

IoT de agricultura inteligente
PAD proporciona a los agricultores asesoramiento agrícola específico a través de mensajes de texto o de voz sencillos sin necesidad de acceso a Internet. En Bangladesh, PAD se ha asociado con mPower, una empresa social que se centra en la creación de aplicaciones agrícolas para pequeños agricultores. mPower ha impactado en 2.2 millones de vidas, ha formado 50 asociaciones y está afectando activamente el cambio en más de 15 países. PAD apoyará dos de los proyectos de mPower: Agro360 y GeoPotato. Agro360 brinda asesoramiento agrícola a los agricultores de arroz y chile a través de mensajes de texto, mientras que GeoPotato actualiza a los agricultores a través de alertas meteorológicas oportunas.

PAD encargó recientemente una encuesta sobre el impacto de la pandemia COVID-19 que se centra en los países en desarrollo y sus prácticas agrícolas. La encuesta informó que el 59% de las personas no podían financiar su consumo regular debido a una disminución en los ingresos. Si bien la pandemia ha exacerbado muchas desigualdades, el uso de tecnología agrícola innovadora puede permitir que las poblaciones vulnerables se recuperen.

Un trabajo en progreso
Todavía queda mucho trabajo por hacer para garantizar la igualdad de acceso a la información para los pequeños agricultores de los países en desarrollo. Sin embargo, las soluciones innovadoras de la agricultura de precisión para el desarrollo para mejorar los medios de vida de los agricultores fomentan una perspectiva optimista.

Leer más
Agricultura de precisión y sostenibilidad

Agricultura de precisión para ganado, no solo cultivos

Travis Bell sabía exactamente cuántas libras de alimento recibía cada corral de ganado en su corral de engorde de 1,500 cabezas en Fordville, Dakota del Norte, el lunes 20 de enero. Eso no parecería una gran hazaña a menos que considere que Bell estaba a más de dos horas de distancia, en Jamestown, en Precision Ag Summit.

Bell pudo ver exactamente cuánto de cada componente de la ración de sus terneros habían puesto sus empleados, usando la aplicación Performance Beef en su teléfono. La aplicación ha cambiado las reglas del juego para Bell’s Edgewood Ranch. A diferencia de los viejos tiempos, cuando mezclar alimento significaba «media cucharada de esto y media cucharada de aquello», Bell podía realizar un seguimiento de la cantidad exacta de alimento que recibía cada corral, lo que le permitía realizar un mejor seguimiento de la rentabilidad. La aplicación también le permite controlar la ingesta y la salud del ganado.

«Performance Beef probablemente ha sido mi mayor activo», dijo.

Puede comparar el rendimiento de los diferentes tipos de ganado y realizar un seguimiento de sus «costos reales» en lugar de solo estimaciones.

«Sabemos exactamente cuáles son todos nuestros costos ahora en comparación con antes de que fueran solo lápiz y papel», dijo.

Bell se unió al veterinario de Extensión de la Universidad Estatal de Dakota del Norte y especialista en administración ganadera Gerald Stokka y al vicepresidente de la Unión de Agricultores de Dakota del Norte Jason McKenney en un panel sobre agricultura de precisión en el ganado en la novena Cumbre anual de Precision Ag.

Si bien la Cumbre generalmente se enfoca más en la agricultura que en la ganadería, los operadores de ganado también han adoptado avances tecnológicos, explicó Stokka. Por ejemplo, comparó el desarrollo de la genética en el ganado, utilizando técnicas como la inseminación artificial y la transferencia de embriones, con el desarrollo de la genética de semillas en la agricultura. Ambos han permitido que la industria avance hacia rasgos más deseables.

Para Bell, esos avances genéticos significan que puede usar toros Simmental para criar vacas Angus, algo que muchos ganaderos evitaron en el pasado debido a la preocupación por tirar terneros. También cría ganado Simmental registrado para propagar la genética que quiere ver en el ganado.

Además de la genética y la aplicación Performance Beef, Bell dijo que también se beneficia de los avances en la alimentación y la medicación. Él alimenta un producto con probióticos e ionóforos para tratar de mantener al ganado sano y reducir la cantidad de antibióticos que tiene que usar para tratar a los terneros enfermos.

McKenney, quien forma parte de la junta de la North Dakota Livestock Alliance, dijo que las industrias láctea y porcina también han encontrado muchos usos para la tecnología en las operaciones modernas. Desde la identificación de animales hasta la calefacción y refrigeración y el manejo de desechos, las industrias han utilizado la tecnología no solo para mejorar los rebaños, sino también para mantener a los animales cómodos y mantener las operaciones sostenibles, dijo.

«Una vaca feliz es una vaca que gana dinero, o en este caso, produce leche», dijo.

Por mucho que los operadores ganaderos usen la tecnología ahora, Stokka ve un desarrollo futuro que podría ayudar a algunos de los principales problemas que enfrentan las operaciones. Él ve datos genéticos aún mejores, al observar cosas como la longevidad de las vacas y la resistencia a las enfermedades. Puede ver aplicaciones en imágenes, ya sean drones o satélites o cámaras en lugares remotos, para controlar el ganado en los pastos. Puede ver imágenes térmicas utilizadas para ayudar a determinar picos de temperatura y problemas respiratorios, incluso antes de que el ganado muestre signos de enfermedad. Ve estaciones en corrales o pastos donde las cámaras y las básculas pueden brindar actualizaciones sobre el ganado, identificado por dispositivos de rastreo. Algunas de esas cosas ya están en proceso, y otras no parecen tan descabelladas como antes.

Pero, ¿puede la tecnología revitalizar una industria ganadera que ha visto partir a muchas personas en las últimas generaciones?

«Me gustaría pensar que sí», dijo Stokka.

Leer más
Agricultura de precisión y sostenibilidad

Prospecto y limitaciones de la agricultura satélite

Para gestionar la variabilidad del suelo y el medio ambiente diferentes sse han aplicado estrategias. La agricultura de precisión es una de las mejores para estas técnicas de gestión. La agricultura de precisión se conoce con diferentes nombres como agricultura de precisión, agricultura satelital o producción de cultivos específicos del sitio. Es una administración agropecuaria de productividad creciente, a la vez que disminuye los costos de producción y minimiza el impacto ambiental de la agricultura basada en la observación y respuesta a las variaciones intra-campo. Se basa en nuevas tecnologías como imágenes de satélite, teledetección y tecnología de la información. También cuenta con la ayuda de la capacidad de los agricultores para localizar su posición en un campo utilizando un sistema de posicionamiento por satélite como el GPS. Los datos geológicos, el sistema de posicionamiento global GPS, el sistema de información geográfica GIS y la impresora de computadora son las herramientas básicas.

La conciencia de la agricultura de precisión aumentó principalmente en los Estados Unidos a mediados de la década de 1980. En 1985, especialistas de la Universidad de Minnesota alteraron las entradas de cal en los campos de productos. Hacia fines de la década de 1980, este sistema se utilizó para inferir los principales mapas de recomendaciones de información para abonos y nivel de pH. La utilización de sensores de rendimiento creados a partir de nuevos avances, consolidados con la aparición de beneficiarios de GPS, ha ido avanzando a pasos agigantados desde ese punto en adelante. Hoy, estos marcos cubren unos pocos millones de hectáreas. Ahora se han cultivado con éxito todo tipo de cultivos agronómicos y hortícolas con esta técnica.

En los Estados Unidos, no se relacionó con la agricultura económica sino con los agricultores estándar que intentaron aumentar los beneficios quemando efectivo solo en las zonas que requieren abono. Esta práctica permite al agricultor diferenciar la tasa de estiércol sobre el campo de acuerdo con la necesidad reconocida por el muestreo de zona o cuadrícula guiado por GPS. El abono que se habría esparcido en territorios que no necesitan preocuparse por él puede colocarse en regiones que sí lo hacen, de esta manera agilizando su utilización. En todo el mundo, la agricultura de precisión se creó a un ritmo contradictorio. Los países precursores fueron Estados Unidos, Canadá y Australia. En Europa, el Reino Unido fue el primero en bajar de esta manera, seguido casi por Francia. En Francia, la agricultura de precisión apareció inicialmente en 1997-1998. El avance del GPS y las estrategias de esparcimiento de tasa variable afianzó la administración de la agricultura de precisión. En la actualidad, menos del 10% de los agricultores de Francia están equipados con marcos de tipo variable. La aceptación del GPS es más generalizada. En cualquier caso, esto no ha dejado de utilizar las administraciones de agricultura de precisión, que proporciona mapas de sugerencias a nivel de campo.

ADVERTISEMENT
REPORT THIS AD

Moran aclara que su modelo de computadora tiene en cuenta las propiedades físicas de una planta determinada al hacer sus recuentos. A medida que se integran, también se ingresa en el modelo nueva información de detección remota para demostrar qué variables, como la temperatura del aire o la humedad del suelo, están cambiando después de un tiempo y en qué medida. Luego usa ecuaciones científicas para relacionar la temperatura de las plantas con la temperatura del aire circundante y determinar cuánta agua está utilizando la planta.

Las prácticas de agricultura de precisión pueden disminuir fundamentalmente la cantidad de suplementos y otros insumos de cosecha utilizados al tiempo que aumentan los rendimientos. Por lo tanto, los agricultores adquieren una llegada en su empresa al ahorrar dinero en costos fitosanitarios y de compost. La segunda ventaja, a mayor escala, de centrarse en los insumos, en términos espaciales, temporales y cuantitativos, se refiere a los efectos naturales. Aplicando las medidas perfectas de insumos en el lugar correcto y en el momento ideal, se ahorran suelos y aguas subterráneas, se aseguran los rendimientos y posteriormente todo el ciclo del producto. Posteriormente, la agricultura de precisión se ha convertido en una piedra angular de la agricultura sustentable.

Para el 2050, la población mundial se pondrá en contacto con 9.2 mil millones de personas, un 34 por ciento más que en la actualidad. Gran parte de este desarrollo ocurrirá en la creación de naciones como Brasil, que tiene la zona más grande del mundo con área cultivable para la agricultura. Para estar al tanto del aumento de la población y el desarrollo de los salarios, la creación de sustento mundial debe aumentar en un 70 por ciento para tener la capacidad de nutrir al mundo.

La variabilidad de caracterización involucra condiciones climáticas, análisis de suelos, prácticas de cultivo, identificación de malezas y enfermedades. Teniendo en cuenta estos factores y utilizando la agricultura de precisión, los agricultores pueden crear más sustento a una pequeña cantidad del gasto. Los agricultores también racionan el suelo para generar sustento económico. La agricultura de precisión da como resultado un suministro de sustento constante, lo que da como resultado un grupo sólido.

Un agricultor podría tomar una foto de un producto con su teléfono celular y transferirla a una base de datos donde un especialista podría monitorear el desarrollo del rendimiento teniendo en cuenta su coloración y diferentes propiedades. Las personas pueden dar su propia lectura particular sobre la temperatura y la humedad y ser un sustituto de la información del sensor si no hay ninguna accesible. Con el desarrollo de solicitudes en la red mundial de tiendas de alimentos, es fundamental ampliar los activos agrícolas de una manera práctica. Las investigaciones recientes están preparadas de manera interesante para comprender las complejidades de la agricultura y construir los pronósticos y modelos climáticos correctos que empoderen a los agricultores y las organizaciones para tomar las decisiones correctas.

Por ahora, los países desarrollados utilizan los avances de la agricultura de precisión, ya que requieren una base sólida de TI y activos para realizar el monitoreo. Hay muchas limitaciones para adoptar esta práctica en Pakistán. La falta de facilidades financieras y crediticias son las razones más importantes para la no adopción de la agricultura de precisión. Obtener crédito es un proceso difícil, porque los agricultores no pueden producir garantías colaterales. La instalación por goteo y el uso de fertilizantes solubles en agua eran muy costosos y requerían crédito. Debido a las fluctuaciones de los precios de producción, los agricultores no están preparados para realizar inversiones. La falta de conocimiento sobre las tecnologías de la agricultura de precisión es otra limitación importante, porque la mayoría de los pequeños agricultores son analfabetos y no pueden seguir y adoptar las últimas tecnologías. La escasez de mano de obra también es un problema al adoptar la agricultura de precisión, Debido a la urbanización y la migración, hay escasez de mano de obra para las operaciones agrícolas. Dado que la agricultura de precisión es una tecnología que requiere mucha mano de obra y las operaciones tienen un límite de tiempo, el agricultor se enfrenta a la escasez de mano de obra, especialmente durante el apilado y la cosecha. Los agricultores tradicionales tenían una percepción errónea sobre el mayor rendimiento de la cantidad precisa de insumos. Es una limitación importante para la adopción de la agricultura de precisión. Para Pakistán, debemos adoptarlo con cuidado. Deberíamos iniciarlo en las estaciones de investigación de la agricultura. Podemos coordinar con China o cualquier país desarrollado con dicho proyecto de esta manera también podemos obtener mano de obra calificada y conocimientos técnicos. El agricultor se enfrentó a la escasez de mano de obra, especialmente durante el apilado y la cosecha. Los agricultores tradicionales tenían una percepción errónea sobre el mayor rendimiento de la cantidad precisa de insumos. Es una limitación importante para la adopción de la agricultura de precisión. Para Pakistán, debemos adoptarlo con cuidado. Deberíamos iniciarlo en las estaciones de investigación de la agricultura. Podemos coordinar con China o cualquier país desarrollado con dicho proyecto de esta manera también podemos obtener mano de obra calificada y conocimientos técnicos. El agricultor se enfrentó a la escasez de mano de obra, especialmente durante el apilado y la cosecha. Los agricultores tradicionales tenían una percepción errónea sobre el mayor rendimiento de la cantidad precisa de insumos. Es una limitación importante para la adopción de la agricultura de precisión. Para Pakistán, debemos adoptarlo con cuidado. Deberíamos iniciarlo en las estaciones de investigación de la agricultura. Podemos coordinar con China o cualquier país desarrollado con dicho proyecto de esta manera también podemos obtener mano de obra calificada y conocimientos técnicos.

Leer más
Agricultura de precisión y sostenibilidad

Manejo de malezas específico del sitio

El manejo de malezas específico del sitio puede ser una opción cuando las malezas están ubicadas en parches, en lugar de esparcirse uniformemente por el campo. El manejo de parches puede reducir de manera efectiva el uso de herbicidas, ya que los herbicidas solo se aplican a partes del campo. El uso de herbicidas a largo plazo también puede reducirse controlando desde el principio parches de malezas nuevas o difíciles de controlar y previniendo su propagación a todo el campo. Esta estrategia fue ampliamente utilizada antes de la introducción de herbicidas, donde estas áreas se eliminaron antes de la producción de semillas maduras en los campos.

El control de los parches de malezas requiere un conocimiento detallado de la ubicación de estos parches. La exploración de campo o la teledetección pueden proporcionar a los agricultores algún conocimiento sobre dónde se encuentran los parches de malezas. Las fotografías aéreas tomadas en un momento en el que es posible diferenciar el cultivo de las malas hierbas también pueden dar a los agricultores una idea de la ubicación de los parches de malas hierbas.

En Alberta, se ha utilizado un rociador con sensor de malezas para detectar malezas en el campo sin un mapeo previo (Blackshaw et al., 1998). Esta tecnología solo funciona cuando las malezas son grandes o en parches densos y no se pueden usar en el cultivo. Los investigadores encontraron que es útil en sistemas de barbecho, lo que resulta en una reducción del 19-60% en el uso de herbicidas durante un período de barbecho. Otras tecnologías de rociadores específicos del sitio se están volviendo más comunes a medida que los sistemas de posicionamiento global (GPS) y los rociadores de tasa variable se vuelven más accesibles.

Lea más en Manejo de malezas con agricultura de precisión .

Recomendaciones
El control de parches de malezas nuevas o difíciles de controlar evita que se propaguen por todo el campo.

Explorar campos o usar sensores remotos o fotografías aéreas permite a los agricultores ubicar parches de malezas en el campo.

Los parches se pueden manejar con operaciones de rociado localizadas, rociadores con detección de malezas (en barbecho) o sistemas guiados por GPS.

Los parches de malezas también se pueden controlar con métodos no químicos, que incluyen el corte, la labranza, el corte para ensilaje o el pastoreo.

Leer más
Agricultura de precisión y sostenibilidad

Drones alternativa para la aspersión aérea de productos agrícolas

La agricultura utiliza comúnmente helicópteros, aviones convencionales y ultralivianos para la aspersión aérea de productos agrícolas; sin embargo, los vehículos aéreos no tripulados (VANT) o drones se están convirtiendo en una alternativa en muchos países.

En Japón los drones se han utilizado en los últimos 20 años, incluso el sector agrícola los emplea para hacerle frente al envejecimiento de la fuerza laboral del campo. Se estima que más de 2500 helicópteros de control remoto (Yamaha RMAX) son utilizados para la aplicación de pesticidas en cerca de un millón de hectáreas de arroz en ese país.

En Australia se usan helicópteros no tripulados, especialmente para el control de malezas, con el permiso de la Autoridad Civil para la Seguridad Aérea (CASA). En Estados Unidos la Administración Federal de Aviación (FAA) aprobó en el primer semestre de 2015 el uso del helicóptero japonés para realizar aspersiones aéreas en los cultivos.

Además, en el país norteamericano es cada vez más intensa la investigación sobre el uso de los drones en las actividades agrícolas. La Universidad de Michigan, por ejemplo, investiga la forma de utilizar VANT en labores como reconocimiento de los campos, aspersiones aéreas de productos agrícolas, inspecciones fitosanitarias, vigilancia y búsqueda de animales.

En Colombia, la agricultura utiliza los drones especialmente para los levantamientos topográficos y obtención de índices de vegetación por medio de cámaras multiespectrales, y muy poco en aspersiones aéreas de productos agrícolas.

En caña de azúcar
El ingenio Risaralda probó un vehículo aéreo no tripulado de la empresa Aerospace Scanning Technologies (AeroScanTech) para la aplicación de maduradores en áreas con obstáculos y relieves difíciles para aviones ultralivianos.

Tras las aplicaciones de prueba Cenicaña realizó una evaluación preliminar sobre el desempeño del dron y pudo constatar que la operación es técnicamente viable.

Teniendo en cuenta el tiempo invertido en giros, cambio de baterías, aprovisionamiento de la mezcla y trabajo sólo entre 6:00 a.m. y 10:00 a.m. (horario con condiciones ambientales favorables), se podrían aplicar alrededor de 8 hectáreas de madurador por hora y cerca de 32 hectáreas diarias. Actualmente con un avión ultraliviano se pueden aplicar entre 150 y 200 hectáreas diarias.

Con tarjetas hidrosensibles, marcadas durante una de las aplicaciones de madurador se midió el número de gotas por cm2, el cual fue de 13.5 y se estimó el tamaño de las gotas (350 a 500 µ), parámetros que se ajustan a lo requerido en una aspersión aérea de maduradores.

Sin embargo, se pueden hacer variaciones en el sistema de aspersión, como por ejemplo: en los tipos de boquillas y presiones de descarga, longitud del aguilón, cantidad de boquillas y su espaciamiento y ancho de la franja de aplicación con diferentes alturas de vuelo; todo esto con el propósito de lograr una mayor uniformidad en la aplicación y hacer de este sistema una alternativa eficiente para la aspersión aérea de productos agrícolas en el cultivo de la caña de azúcar.

Demostración de la operación del dron en las instalaciones de Cenicaña, ante los integrantes del Comité de Maduración.
La prueba
Las aplicaciones de prueba se realizaron del 10 al 13 de mayo de 2016 en el ingenio Risaralda y el 30 de junio en Cenicaña.
La descarga fue de 1.1 litros de mezcla por minuto, se voló a 30 km/h y con un ancho de franja de 5 metros, con lo cual se cubrió una hectárea en 4 minutos, con una descarga de 4.4 litros de mezcla.
El cambio de baterías se sincronizó con el reaprovisionamiento del tanque de mezcla, de tal forma que fue suficiente recargar un volumen de 12 litros, que es ligeramente superior a la descarga en los 10 minutos de vuelo.
Características del dron y su operación
Tanque de 15 litros de capacidad y un aguilón de 2.6 m de longitud con seis boquillas espaciadas cada 50 cm.
La operación es ejecutada a control remoto por un operador certificado por la Aeronáutica Civil y un observador del programa de vuelo en el computador portátil. Durante el vuelo el operador debe tener a la vista el dron para controlar la altura, hacer el cierre de las boquillas durante los giros (operaciones aún sin automatizar), evitar obstáculos no considerados en el plan de vuelo y ordenar el aterrizaje.
El sistema de aspersión funciona con una pequeña bomba eléctrica que se alimenta de las mismas baterías que proporcionan la energía para los motores de los seis rotores del dron. La bomba proporciona una presión hasta de 100 psi al sistema de aspersión.
La velocidad de desplazamiento varia de acuerdo con las necesidades o preferencias.
Las baterías utilizadas permiten una autonomía de vuelo de aproximadamente 15 minutos. El dron está programado para regresar autónomamente al sitio del cual despega en el momento que detecte una descarga de las baterías que represente riesgo para la operación. Normalmente no se deja llegar a este punto y se le ordena aterrizar, mediante control remoto, cuando se cumplen 10 minutos de vuelo.

Leer más