Agricultura de precisión y sostenibilidad

PRUEBAS DE SUELO y agricultura de precision

Se puede analizar una muestra de suelo para determinar su composición, niveles de nutrientes y características como el equilibrio del pH. Las pruebas de suelo generalmente se llevan a cabo como parte de un programa, que consta de cuatro fases: 1) muestreo del suelo; 2) análisis de muestras; 3) interpretación de datos y 4) recomendaciones de manejo del suelo. Las pruebas de suelo pueden ayudar a determinar los niveles de fertilidad del suelo e identificar deficiencias de nutrientes, toxicidades potenciales y oligoelementos. También son importantes para monitorear las etapas de degradación de la tierra, [1] actuando como un primer paso en la defensa mediante la recopilación regular de información en la que basar la gestión de la tierra y las decisiones sobre fertilizantes a lo largo del tiempo.

En los países desarrollados, las pruebas de suelo se realizan con mayor frecuencia en laboratorios. Las muestras de suelo de África a menudo se envían a laboratorios, incluso tan lejanos como Europa. Para los pequeños agricultores en áreas rurales remotas, los kits de prueba de campo pueden ser más apropiados, pero aún no están ampliamente disponibles y también requieren capacitación para interpretar correctamente los resultados. Las mejoras en los servicios de extensión y las instalaciones de análisis de suelos locales permitirían a los agricultores comprender mejor sus tipos de suelo y las deficiencias de nutrientes para minimizar la cantidad y los tipos de fertilizantes que necesitan comprar y usar.

CONTRIBUCIÓN A LA INTENSIFICACIÓN SOSTENIBLE
El análisis del suelo contribuye a la intensificación sostenible, ya que ayuda a producir más con menos; minimizando las deficiencias de nutrientes, reduciendo costos y limitando el daño ambiental mediante el uso específico y preciso de insumos. Por ejemplo, bajo la dirección de la Agencia de Transformación Agrícola de Etiopía ( ATA ), los agricultores que cultivan maíz híbrido en Etiopía pudieron alcanzar de 6 a 8 toneladas por hectárea, alcanzando el promedio europeo, cuando aplicaron un equilibrio adecuado de NPK (nitrógeno, fósforo y Potasio). Esto se combinó con el boro que, después de las pruebas de suelo, se determinó que era deficiente en la región. [2] El análisis del suelo actúa como un precursor natural de la microdosificación ; la identificación de áreas de baja productividad permiteaplicación precisa de entradas directamente al área objetivo. Esto reduce los costos de los insumos para el agricultor y contribuye a mejorar la seguridad alimentaria y la nutrición con mayores rendimientos, al tiempo que promueve mejores prácticas ambientales.

BENEFICIOS Y LIMITACIONES
FORMACIÓN
La Organización de las Naciones Unidas para la Agricultura y la Alimentación ( FAO ) identificó las principales limitaciones de las pruebas de suelo como la financiación inadecuada para el equipo y la falta de personal capacitado. Muchos países africanos tienen serios problemas para proporcionar servicios de asesoramiento eficaces sobre la gestión de los recursos del suelo a los agricultores, incluso después de haber establecido laboratorios de análisis de suelos y aguas (SWL). Si los datos de la prueba son inexactos, la interpretación es inútil, engañosa y costosa para los agricultores que adoptan recomendaciones basadas en datos inválidos. [3] Los servicios de extensión para análisis de suelos en África son limitados y la mayoría de los agricultores no están capacitados para interpretar los resultados, una causa subyacente de la adopción limitada de análisis de suelos en África.

Existe una gran necesidad de capacitación adecuada y efectiva por parte del personal de laboratorio de los extensionistas y agricultores para un diagnóstico simple. [4] Trabajando para revertir la situación está el Programa de Salud del Suelo de la Alianza para una Revolución Verde en África ( AGRA ) . AGRA ha capacitado a 4.800 extensionistas y 134.000 agricultores líderes, al tiempo que ha apoyado a más de 170 estudiantes, la mitad de los cuales son mujeres, para que estudien ciencias del suelo y agronomía en universidades africanas. [5]

COMUNICACIÓN DE RESULTADOS
La incapacidad de obtener las características del suelo de forma rápida y económica sigue siendo una de las mayores limitaciones para las pruebas de suelo en los países pobres [6] . En muchos países, las demoras de hasta 6 meses en el envío de los informes de laboratorio y las recomendaciones a los agricultores son comunes [7] . La organización de cursos de formación locales y más frecuentes para desarrollar la capacidad local puede reducir estos retrasos. Organizar el intercambio de muestras entre laboratorios o establecer un laboratorio de referencia central en el país puede mejorar la precisión de los datos [8] .

COSTO
Una alternativa potencial a las pruebas de suelo de laboratorio es el uso de kits de prueba de campo. Los agricultores se benefician porque son simples, rápidos y convenientes de usar. Una prueba de nitrógeno (N), fósforo (P) y potasio (K) se puede completar en menos de cinco minutos y el kit se puede llevar fácilmente a lugares rurales remotos. En su forma actual, estos kits de análisis de suelos son relativamente nuevos y no están disponibles en el mercado. Cuando estén más disponibles, se espera que sean alternativas más baratas y rápidas a las pruebas de laboratorio.

Leer más
Agricultura de precisión y sostenibilidad

La agricultura de precisión se vuelve cada vez más importante en la agricultura moderna

La agricultura enfrenta desafíos importantes, existe una presión cada vez mayor sobre los márgenes de ganancia y los agricultores también están tratando de producir alimentos de la manera más sostenible posible.

El AGRO SHOW en Bednary, cerca de Poznan, es una oportunidad para que las Muchos fabricantes de maquinaria agrícola instalan EGNOS de serieempresas muestren las últimas tecnologías para ayudar a los agricultores a trabajar de la manera más eficiente posible. La agricultura de precisión hace uso de tecnología satelital que permite la gestión en tiempo real de cultivos, campos y animales. Ayuda a monitorear y reducir el impacto ambiental de la agricultura. Así lo subraya, por ejemplo, la “Asociación europea de innovación para la productividad y la sostenibilidad agrícolas ( EIP-AGRI ). Esta Asociación fue lanzada en 2012 por la Comisión Europea (DG AGRI) para contribuir a la estrategia ‘Europa 2020’ de la Unión Europea para un crecimiento inteligente, sostenible e integrador, en la que la agricultura de precisión juega un papel clave.

El espectáculo Bednary se centra en la agricultura arable. La combinación de tecnologías de sensores con software vinculado a EGNOS y Galileo permite a los agricultores monitorear y reaccionar a lo que sucede en el terreno. Los sensores pueden captar los niveles de agua, nutrientes y pesticidas. La tecnología identificará dónde se necesita el producto y la mejor manera de entregarlo sobre el terreno. También se utiliza para sembrar y cosechar.

La mayoría de los productores de vehículos agrícolas han incorporado receptores de satélite en su maquinaria para asegurarse de que pueden ofrecer los niveles más altos de productividad a los agricultores. Hablamos con tres empresas para averiguar cómo estaban utilizando GNSS para ayudar a los agricultores.
‘La ingeniería de precisión es cada vez más importante en la agricultura moderna’

Karl Wilhelm Hundertmark, CLAAS Polska, habló sobre el papel de la maquinaria de precisión en la agricultura, que según dijo es cada vez más importante. Dijo que las máquinas ahora se instalan con herramientas informáticas estándar que, por ejemplo, ayudan a administrar el consumo de combustible y realizar un diagnóstico temprano de fallas en las máquinas. CLAAS, como muchos fabricantes, instala EGNOS de serie en todos sus vehículos agrícolas y para arar y pulverizar resulta especialmente útil. Para la siembra, se necesita una mayor precisión, hasta tan solo dos o tres centímetros.

Dispositivo habilitado para Galileo para agricultura de precisión
Jerzy Koronczok, Agrocom Polska presentó el software desarrollado en el transcurso del proyecto Geopal H2020 , al que se puede acceder a través de cualquier computadora. Esta herramienta también requiere un pequeño dispositivo habilitado para Galileo. Esta pequeña caja (ver foto) es útil para todos los agricultores, incluidos los pequeños, ya que se puede agregar a maquinaria más antigua. Funciona con una tableta o un teléfono inteligente y es una solución rentable para documentar digitalmente toda la maquinaria y el equipo de la granja. El movimiento y la ubicación se controlan fácilmente a través de la aplicación, que utiliza las señales del satélite Galileo. De forma gratuita en su versión básica, los agricultores pueden adaptarlo a sus necesidades específicas. Los agricultores también pueden decidir qué componentes adicionales necesitan comprar, de modo que solo paguen por lo que realmente necesitan.

‘Los clientes pueden ahorrar mucho dinero en todos los productos agrícolas a través de la tecnología’

Bogdan Kazimierczak, especialista en ventas de productos de John Deere Polska, se encontraba junto a una gran imagen de un tractor en la luna. La imagen destaca que las herramientas de agricultura de precisión utilizan información satelital. Kazinierczak explicó que estas tecnologías permiten a los agricultores ahorrar mucho dinero en fertilizantes, pesticidas y combustible. Dijo que incluso las fincas más pequeñas de 75 hectáreas pueden hacer uso de aplicaciones para ayudar a administrar sus propiedades de la manera más eficiente posible.

Kazinierczak dice que también hay beneficios para el medio ambiente. La agricultura de precisión puede reducir el riesgo de que el exceso de productos químicos se filtre al suelo mediante el uso de controles de sección. Por ejemplo, en un área donde no se pueden usar productos químicos, el sistema se apagará y no se pulverizarán productos químicos. Por lo tanto, los desarrollos en el sector agrícola están mostrando que, como se destaca en un estudio del Parlamento Europeo sobre agricultura de precisión, “los servicios adecuados de los desarrollos GNSS (Galileo) como una característica clave de la agricultura de precisión son una prioridad, pero también los datos de acceso remoto Los programas de detección (Copernicus) pueden ser un estímulo para mejorar las aplicaciones de agricultura de precisión «.

Por tanto, parece que aprovechar las sinergias entre Galileo y Copérnico es el camino a seguir para la agricultura.

Leer más
Agricultura de precisión y sostenibilidad

PROBLEMAS Y POTENCIAL IMPACTO ECONÓMICO DE LA AGRICULTURA DE PRECISIÓN

La producción de cultivos espacialmente variable, a menudo conocida como agricultura de precisión, se aborda con una variedad de métodos que podrían resumirse como «sistemas de mapeo» y «sistemas de sensores».
Es probable que la futura implementación exitosa de la agricultura de precisión dependa de una combinación del enfoque de mapeo y el enfoque de sensor.

Pero, antes de que esto se convierta en realidad, muchos problemas deben resolverse. Los principales problemas a tratar son la precisión de la señal GPS, encontrar algoritmos para procesar y comprimir datos, desarrollar herramientas para el análisis económico en un sentido de contabilidad de costos basada en cuadrículas, desarrollar software para detectar malezas ( análisis de imágenes digitales) y, por último pero no menos importante, combinando el enfoque de mapeo y sensor para generar mapas de aplicación.

Sin embargo, aún se desconoce el beneficio económico de la agricultura de precisión. Los efectos positivos pueden ser causados ​​por el manejo de N específico del sitio, las tasas de siembra de semillas adoptadas y la reducción del tratamiento con herbicidas. Por otro lado, se describen rendimientos crecientes hasta en un tres y más por ciento. Cabe señalar que cuanto más heterogéneo parece un campo, más posibilidades existen de que la agricultura de precisión sea rentable para el agricultor.

INTRODUCCIÓN

Agricultura de precisión, es decir, cuantificar la siembra, la fertilización y la pulverización según la variación del suelo y la población de plantas. Esto requiere el registro de incluso pequeñas diferencias espaciales en los factores relevantes para el crecimiento de los cultivos, como la calidad del suelo, la disponibilidad de agua y fertilizantes o el rendimiento de los cultivos, solo por mencionar algunos. El registro de estas variables y el uso espacialmente diferenciado de estos factores de producción se realiza mediante máquinas e implementos guiados electrónicamente que reciben las señales para el posicionamiento exacto en el campo de los satélites GPS. Esto permite una eficiencia muy mejorada de los recursos utilizados, conduce a un menor desperdicio de insumos y, además, mejora la ajustabilidad de los sistemas biológico-técnicos.

La Figura 1 muestra que la agricultura de precisión hace posible la información precisa, el trabajo preciso y la aplicación local. Los sensores registran información como el tiempo de trabajo requerido, las horas del tractor, el consumo de combustible, los rendimientos, los períodos de espera (tiempo de inactividad). La precisión del trabajo se logra controlando electrónicamente los implementos. Dependiendo de las diferentes condiciones dadas, la profundidad de trabajo, el mantenimiento preciso del ancho de trabajo, así como la velocidad de trabajo y los giros de conexión de los implementos se pueden regular con precisión incluso dentro de las rejillas de pequeño tamaño. Esto implica una garantía de que las cantidades aplicadas de insumos corresponden exactamente a las cantidades requeridas. Por lo tanto, las semillas, fertilizantes y pesticidas se aplican según se desee. De la misma manera, el manejo del suelo se puede regular dependiendo de las condiciones espaciales a pequeña escala. Lo mismo ocurre con la aplicación local. De acuerdo con las variables medidas por los sensores, por ejemplo, el suministro actual de nutrientes y la humedad del suelo disponible, y de acuerdo con la reducción de nutrientes en el año anterior y los objetivos de rendimiento, se puede determinar qué insumos deben aplicarse, en qué cantidades y en qué momento. . Dependiendo de la posición del implemento, se podrían observar fácilmente las limitaciones establecidas, por ejemplo, para áreas de protección del agua.

Fig.1: Posibilidades y potencial de la agricultura de precisión

Todo esto se basa en el hecho de que los suelos y las condiciones de crecimiento están sujetos a variaciones considerables incluso dentro de parcelas muy pequeñas. Este hallazgo no se conoce. Según el conocimiento del autor, la primera publicación sobre agricultura de precisión es de 1929. Allí, LINSLEY / BAUER (compárese con la figura 2) señaló que «(L) os suelos de este estado, a menudo dentro de un campo, varían enormemente en su necesidad de piedra caliza» y » (Es) importante, por lo tanto, que se realicen pruebas detalladas en el campo para que la piedra caliza pueda aplicarse según la necesidad «. En ese momento, sin embargo, no existían las posibilidades de posicionamiento y de regulación y dirección electrónica que tenemos hoy y tendremos en un futuro próximo. Solo la tecnología actual permite la realización de lo que se percibía claramente hace 70 años.

Fig.2: Primera publicación sobre agricultura de precisión

PROBLEMAS DE AGRICULTURA DE PRECISIÓN

Se habla de agricultura de precisión en todas partes y muchos fabricantes hacen al menos algunos esfuerzos para ofrecer información sobre el posible uso de sus máquinas para la agricultura de precisión. Sin embargo, aún deben resolverse una serie de problemas antes de que numerosos agricultores puedan practicar la agricultura de precisión como se entiende en este artículo. A continuación discutiremos una selección de cinco problemas, a saber

la precisión del posicionamiento
la combinación de mapeo y sistemas en tiempo real
algoritmos para la reducción y el procesamiento de la cantidad de datos recopilados
modelos de cálculo de la cantidad óptima de factor aplicado
modelos de análisis económico

Precisión de posicionamiento

Se requieren diferentes grados de precisión para diferentes tareas, como pueden mostrar los ejemplos de la figura 3. Para la navegación, es decir, buscando campos en el caso de uso de maquinaria cooperativa, es suficiente una precisión de +/- 1o metro. Para el trabajo de campo y la obtención y documentación necesarias de la información se requiere +/- 1 metro, por lo que, en particular, un ancho de trabajo pequeño como en la cosecha combinada puede causar problemas considerables y hacer deseable una mayor precisión.

Fig.3: Necesidades de precisión de la agricultura de precisión (Auernhammer, 1998)

Si se considera el guiado automático del vehículo para facilitar la conducción, por ejemplo, en el caso de giros de conexión (con un ancho de trabajo amplio) o en cosecha combinada, se requiere una precisión de +/- 1o centímetros. La precisión debe ser aún mayor cuando, por ejemplo, los implementos para el control de malezas deben guiarse automáticamente.

Como se muestra en la figura 4, la tecnología de precisión se ha desarrollado rápidamente en los últimos años. En particular, la transición del GPS al DGPS ha dado lugar a algunos avances a este respecto. La precisión alcanzable hoy en día asciende a +/- 1-3 metros para DGPS dependiendo de la distancia desde la estación de referencia. Cuanto mayor es la distancia desde la estación, menos precisa es la medición de la posición real. Recientemente, ha surgido un problema adicional cada vez más a menudo: cuanto más cerca esté el campo en el que se trabaja de las estaciones transmisoras de las redes de telefonía móvil, más se distorsionará la señal. En la vecindad inmediata de tales estaciones, el posicionamiento exacto ya no es posible parcialmente.

Fig.4 : Análisis de precisión de GPS y DGPS (Auernhammer et al. 1998)

La Figura 5 muestra la diferencia entre las mediciones teóricas y las lecturas reales para la cosecha combinada. A una velocidad de conducción de 1,8 metros por segundo, un ancho de trabajo de 5 metros y mediciones tomadas cada segundo, pueden aparecer desviaciones considerables. Aquí se deben encontrar algoritmos que se adapten a la precisión requerida para corregir la superposición y el espacio de las celdas de medición.

Fig.5: Detección DGPS de cosechadoras (Auernhammer, 1998)

Combinación de mapeo y sistemas de sensores

Básicamente se están debatiendo dos enfoques diferentes de la agricultura de precisión: el primero es el enfoque de mapeo con sistemas de mapeo, el segundo es el enfoque de sensor con sistemas de sensor (en tiempo real).

La forma en que funcionan los sistemas de mapeo se muestra en la figura 6. Los datos pasados ​​se utilizan para determinar las entradas necesarias para la situación actual. Se extraen conclusiones de los rendimientos de años anteriores y de los nutrientes que se miden en el suelo en cuanto a las cantidades de fertilizantes y semillas a aplicar. De esta forma también se puede controlar la aplicación de herbicidas. Este enfoque es particularmente adecuado para áreas de bajo rendimiento y, por lo tanto, para fertilizantes de fosfato y potasio, condiciones climáticas relativamente constantes y rotaciones exclusivas de cultivos de cereales. Para la fertilización con nitrógeno de alto rendimiento, el sistema alcanza sus límites, ya que la fertilización con nitrógeno, como regla, debe ajustarse a los parámetros recientes en lugar de a las condiciones pasadas.

Fig.6: Sistemas de mapeo

Fig.7: Sistemas en tiempo real

Fig.8: Fertilización en tiempo real

Los sistemas en tiempo real contrastan con los sistemas de mapeo. Aplican insumos, especialmente fertilizantes nitrogenados, según las necesidades de la población vegetal en el momento dado. Los sensores conectados al tractor brindan información sobre la humedad del suelo disponible y el suministro actual de N de la planta. La aplicación de fertilizantes nitrogenados se basa en estos datos. El principio del enfoque se muestra en la figura 7. Los sistemas en tiempo real son adecuados para áreas de alto rendimiento con condiciones climáticas muy variables y son adecuados para rotaciones de cultivos variadas, pero básicamente exclusivamente para fertilización con nitrógeno. La Figura 8 muestra cómo funciona uno de esos sistemas.

Tanto el mapeo como los sistemas en tiempo real en sí mismos tienen ventajas y desventajas. Se puede esperar un progreso real al vincular ambos sistemas como se muestra en la figura 9. Mediante mapas de rendimiento y mapas de nutrientes del suelo, este enfoque intenta explorar los potenciales de rendimiento metro a metro y aplicar fertilizantes nitrogenados de acuerdo con el potencial de rendimiento ylas condiciones actuales. Con este enfoque, la situación actual de la población de plantas puede tratarse de manera óptima y, al mismo tiempo, tomarse en consideración las limitaciones ecológicas y económicas. El enfoque es adecuado para regiones de alto rendimiento con condiciones climáticas muy cambiantes y para fertilizar con nitrógeno, fosfato y potasio. Por tanto, el enfoque es muy adecuado para regiones de Europa. Gran parte de los problemas relacionados con él aún no se han resuelto. El 1 de septiembre de 1998, un equipo de Weihenstephan inició un proyecto de investigación interdisciplinario con el objetivo de promover este enfoque en los próximos 6 años. En particular, el desarrollo de sensores y modelos para la deducción de las cantidades requeridas de fertilizante en función del estado de crecimiento de las plantas y la humedad del suelo disponible acaba de comenzar recientemente.

Fig.9: Sistemas en tiempo real con superposición de mapas

Procesamiento y condensación de datos acumulados

El volumen probable de datos acumulados en agricultura de precisión con recolección automática de datos por hectárea, respectivamente una finca de 300 hectáreas, se presenta en la figura 1o. Se asumió un cierto ancho de trabajo y una velocidad de trabajo para cada una de las siguientes cinco actividades: cosecha combinada, labranza, siembra, pulverización y fertilización. El ancho de trabajo y la velocidad de trabajo de las actividades definen el rendimiento de la superficie. Se basa en el supuesto de que las mediciones se toman cada segundo. El número de conjuntos de datos se calcula mediante proyección sobre una hectárea. El número de atributos de datos por conjunto varía según la medida tomada. Cada conjunto de datos contiene un encabezado idéntico que define el tipo de conjunto de datos, tiempo, longitud, latitud y altitud y también permite una declaración sobre la calidad de la detección. El número de atributos adicionales depende de la actividad de la tarea realizada. Por ejemplo, en el caso de la cosecha de cereales, tales atributos pueden ser el ancho de corte real, la posición operativa de la unidad de corte, la distancia recorrida y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. Por ejemplo, en el caso de la cosecha de cereales, tales atributos pueden ser el ancho de corte real, la posición operativa de la unidad de corte, la distancia recorrida y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. Por ejemplo, en el caso de la cosecha de cereales, tales atributos pueden ser el ancho de corte real, la posición operativa de la unidad de corte, la distancia recorrida y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. en el caso de la cosecha de cereales, tales atributos pueden ser el ancho de corte real, la posición operativa de la unidad de corte, la distancia recorrida y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. en el caso de la cosecha de cereales, tales atributos pueden ser el ancho de corte real, la posición operativa de la unidad de corte, la distancia recorrida y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. y también datos relacionados con el rendimiento, como la cantidad de rendimiento, las pérdidas de grano o la humedad del grano. Si los implementos cuentan con sensores apropiados, se pueden considerar otros atributos. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte. El número de conjuntos de datos por año y hectárea, así como el número de atributos por año y hectárea, se pueden calcular a partir del número de tareas por año. La última columna de la figura muestra el número de bytes por año y hectárea basado en una longitud de datos de 6 bytes por atributo. En este caso resultarían 1,3 megabytes. El volumen anual de datos para una finca de 300 hectáreas ascendería a 402 megabytes o casi medio gigabyte.

Actividad Anchura de trabajo (m) Velocidad de trabajo (m / seg) Área (rendimiento) (m 2 ) Número de conjuntos de datos / hectárea y tarea Número de atributos / conjunto de datos 1) Número de atributos / hectárea y tarea Número de tareas / año Número de tareas / año y hectárea Número de atributos / año y hectárea Bytes / atributo Bytes / año y hectárea
Cosecha de cereales (cosechadora) 5 1,4 7 1.429 20 28.571 1 1.429 28.571 6 171.429
Labranza 3 2 6 1.667 25 41.667 2 3.333 83.333 6 500.000
Siembra 3 2 6 1.667 25 41.667 1 1.667 41.667 6 250.000
Rociar 15 2 30 333 35 11.667 3 1.000 35.000 6 210.000
Fertilizante 15 2 30 333 35 11.667 3 1.000 35.000 6 210.000
Total / ha 8.429 223.571 1.341.429
(1,3 Mbyte)
Para una finca de 300 ha 2.528.571 67.071.429 402.428.571
(402 Mbyte)
1) Estimación, incluye encabezado con: Tipo de conjunto de datos; longitud geográfica, latitud, altitud; calidad de detección

Fig.10: Volumen de datos mediante agricultura de precisión y registro de datos automatizado (estimado)

Este volumen de datos es, por supuesto, impracticable. Por lo tanto, se deben encontrar algoritmos adecuados para la condensación y el cálculo de datos para reducir notablemente el volumen de datos. Sin embargo, todavía se desconoce en gran medida qué datos son prescindibles.

Encontrar la cantidad óptima de entrada aplicada

Con los sistemas disponibles en los mercados hoy en día, el agricultor solo decide cuánto insumo, por ejemplo, nitrógeno, se aplicará a un sitio. Esto significa que la experiencia y la intuición determinan su decisión. Hasta el momento, no existen modelos que funcionen de manera confiable capaces de calcular la cantidad óptima de fertilizante con referencia a los parámetros del suelo y la población de plantas en cuadrículas de pequeño tamaño. Sin embargo, estos modelos son necesarios si queremos reducir el tamaño de las partes de los campos gestionados individualmente y cuanto más heterogéneas sean las condiciones conocidas de una ubicación. En algunas regiones de Alemania, por ejemplo, la calidad del suelo, el suministro de nutrientes y la disponibilidad de agua varían mucho en unos pocos metros. Podemos reaccionar a tales variaciones solo gestionando las partes de los campos a la menor escala posible. ,

Los modelos que se desarrollarán deben ser capaces tanto de tener en cuenta datos del pasado, por ejemplo, para establecer el potencial de rendimiento de una parte de un campo, como de procesar las condiciones actuales, como el suministro de nitrógeno sondeado por el sensor de las plantas o el sensor registró la disponibilidad de agua de la red en cuestión. El establecimiento de tales modelos es un componente que no debe subestimarse en la aceptación de la agricultura de preción por parte de los propios agricultores.

Modelos de análisis económico

Aún no existen modelos para el análisis económico de la agricultura de precisión. Los sistemas comerciales de registro de campo generalmente no van más allá del nivel de margen bruto y, en el mejor de los casos, no se puede calcular más que el margen bruto de una parcela. Por tanto, no es posible calcular el margen bruto para partes individuales de un campo, ni para grupos homogéneos de tales partes. Desde el punto de vista de la gestión agrícola, se pueden concebir modelos en el marco de la contabilidad de costes totales, que permitan el análisis de cualquier parte espacial de un campo. Esto es particularmente importante para el cálculo de la eficiencia económica de la agricultura de precisión. No se sabe si se pondrán en práctica tales modelos necesarios para los fines de la investigación.

Estas consideraciones han demostrado que existe una larga lista de problemas que deben resolverse antes de que la agricultura de precisión sea una práctica generalizada.

LA EFICIENCIA ECONÓMICA DE LA AGRICULTURA DE PRECISIÓN

Para administrar sus granjas según los principios de la agricultura de precisión, los agricultores deben estar dispuestos a invertir en tecnología y servicios. Básicamente hay tres tipos de inversión:

para la recolección de datos: mapeo de rendimiento, sistema de posicionamiento (DGPS), espectrómetro para determinar el requerimiento de nitrógeno de las plantas, dispositivos para tomar muestras de suelo, dispositivos para determinar la presión de las malezas,
para el procesamiento de datos: hardware, software,
para la aplicación de insumos: esparcidor de fertilizante guiado por computadora, pulverizador de herbicida guiado por computadora, sembradora guiada por computadora,
Algunos de los componentes están disponibles actualmente, otros estarán disponibles en un futuro próximo. Como se mencionó anteriormente, es el software basado en la «lógica de aplicación» de la agricultura de precisión el que plantea problemas importantes.

Fig.11: Determinación del nivel de insumos para un campo (por ejemplo, fertilizante)

Por otro lado, están los beneficios de aumentar los rendimientos y / o disminuir la cantidad de insumos.

Los mayores ingresos y la posibilidad de reducir los costos deberían cubrir el costo adicional de la inversión. Las razones del beneficio adicional y la reducción de costes se encuentran en los diferentes enfoques de la gestión agrícola indiferenciada (tradicional) y de la agricultura de precisión. La Figura 11 muestra el enfoque indiferenciado del manejo de la finca con respecto a la aplicación de fertilizantes a una parcela (o en general: la definición del nivel de insumo aplicado). La tasa de aplicación de fertilizante se determina igualmente para todo el campo por el rendimiento promedio esperado, aquí de 70 decitones por hectárea, y la diferencia entre el nitrógeno disponible en el suelo y la cantidad de nitrógeno requerida por el rendimiento esperado.

Fig.12: Determinación del nivel de entrada para un campo (por ejemplo, fertilizante)

La Figura 12 muestra cómo se determina la tasa de aplicación de nitrógeno para cada cuadrícula según el enfoque de la agricultura de precisión. Las diversas partes del campo tienen diferentes potenciales de rendimiento, para cada uno de los cuales se puede determinar la tasa de aplicación de fertilizante requerida localmente. Hay áreas de mayor y menor potencial de rendimiento, que deben recibir más o menos nitrógeno según sea necesario.

Fig.13: Posibles efectos de la agricultura de precisión: ubicación heterogénea

La Figura 13 presenta los posibles efectos de la gestión relacionada con el campo parcial para un sitio heterogéneo. El potencial de rendimiento de este campo varía de 56 a 84 decitones / ha indicado por la línea que cae de izquierda a derecha (dispersión de heterogeneidad +/- 2o%: 7o dt +/- 14 dt). En el marco del mapeo de rendimiento, el sitio se divide en 5 clases de heterogeneidad de rendimiento de igual tamaño, cada una de las cuales comprende el 20% del sitio completo. Esto se indica en la abscisa. Hasta ahora, el sitio (línea horizontal gruesa) ha sido fertilizado uniformemente con un objetivo de 70 decitones / ha. En consecuencia, por un lado, se perdió el rendimiento en partes con alto potencial de rendimiento (Clase I, II y 50% de III) y, por otro lado, se desperdició fertilizante en partes con bajo potencial de rendimiento (50% de III, IV y V). Mediante la gestión diferenciada del sitio ahora se puede obtener más rendimiento y reducir el desperdicio de fertilizante. En el presente caso, la cantidad total de fertilizante aplicada al sitio sigue siendo la misma, ya que la cantidad menor aplicada a partes de bajo potencial de rendimiento se compensa con la cantidad adicional utilizada para áreas de alto rendimiento. Pero este enfoque aumenta la eficiencia general de los insumos aplicados, aquí de nitrógeno. Estos hallazgos teóricamente deducidos corresponden a la praxis en muchos casos. En un sitio de 28 hectáreas se descubrieron cifras de calidad del suelo (la mejor calidad es igual a 100, la menor calidad es igual a 0) de 19 a 70 (ALBERT, 1997). Con N En el presente caso, la cantidad total de fertilizante aplicada al sitio sigue siendo la misma, ya que la cantidad menor aplicada a partes de bajo potencial de rendimiento se compensa con la cantidad adicional utilizada para áreas de alto rendimiento. Pero este enfoque aumenta la eficiencia general de los insumos aplicados, aquí de nitrógeno. Estos hallazgos teóricamente deducidos corresponden a la praxis en muchos casos. En un sitio de 28 hectáreas se descubrieron cifras de calidad del suelo (la mejor calidad es igual a 100, la menor calidad es igual a 0) de 19 a 70 (ALBERT, 1997). Con N En el presente caso, la cantidad total de fertilizante aplicada al sitio sigue siendo la misma, ya que la cantidad menor aplicada a partes de bajo potencial de rendimiento se compensa con la cantidad adicional utilizada para áreas de alto rendimiento. Pero este enfoque aumenta la eficiencia general de los insumos aplicados, aquí de nitrógeno. Estos hallazgos teóricamente deducidos corresponden a la praxis en muchos casos. En un sitio de 28 hectáreas se descubrieron cifras de calidad del suelo (la mejor calidad es igual a 100, la menor calidad es igual a 0) de 19 a 70 (ALBERT, 1997). Con Nmin sondas en una parcela vecina se midieron valores de 21 a 75 kg de nitrógeno en un sitio (STENGER et al., 1993, p. 305). Sin embargo, también hay sitios de menor heterogeneidad, es decir, ubicaciones comparativamente homogéneas. Los efectos de la agricultura de precisión en estos lugares no son tan obvios. Esto se puede ver en la figura 14 con el ejemplo de una ubicación que tiene un potencial de rendimiento mínimo de 66,5 decitones / ha y un máximo de 73,5 decitones / ha. Aquí el aumento potencial de rendimiento es considerablemente menor, así como el ahorro de fertilizante en parcelas con menor potencial de rendimiento (dispersión de heterogeneidad +/- 5%: 7o dt +/- 3,5 dt).

Fig.14: Posibles efectos de la agricultura de precisión: ubicación homogénea aproximada

En la agricultura práctica se puede observar que los agricultores no aplican fertilizantes de acuerdo con el potencial de rendimiento medio de sus campos, sino con respecto al potencial de rendimiento de las mejores partes. Las condiciones en la figura 15 son inicialmente las mismas que en la figura 13 con la excepción de fertilizar hacia 75 decitones / ha en lugar de 70 decitones. Como se puede ver, la orientación es hacia un mayor potencial de rendimiento. Esto implica que el aumento de rendimiento debido a la agricultura de precisión será menor en el caso de un manejo específico del sitio, mientras que hay un ahorro real de fertilizante. Esto se acerca más a la agricultura tal como se practica hoy: los aumentos de rendimiento de experimentos documentados en la mayoría de las ubicaciones heterogéneas casi nunca alcanzan más del 5% en comparación con el manejo uniforme, mientras que la eficiencia del nitrógeno podría mejorarse (EHLERT / WAGNER, 1997, p. 27). Es decir, en la mayor parte de los sitios se desperdició fertilizante. La agricultura de precisión muestra resultados beneficiosos sobre todo en el ahorro de factores de producción resp. en la mayor eficiencia del uso de factores. El aumento de rendimiento al que se aspira será bastante bajo en comparación con el manejo uniforme del campo.

Fig.15: Posibles efectos de la agricultura de precisión con niveles pasados ​​altos de fertilización: ubicación heterogénea

La Figura 16 muestra los resultados de un análisis de la literatura sobre las consecuencias económicas de la agricultura de precisión. Los estudios sobre la reducción del costo de los herbicidas muestran que se puede ahorrar entre un 50% y un 80% de los costos de los herbicidas cuando se tratan solo las áreas donde realmente crecen las malezas. Los ahorros en términos de dinero dependen en gran medida del precio del herbicida, por lo que aquí no es posible una generalización.

Autor objeto de investigación resultados
Green y col.
(Estados Unidos, 1997)
tratamiento herbicida espacialmente variable en cacahuetes hasta un 70% menos de
uso de herbicidas
Nordmeyer / Häusler / Niemann (Alemania, 1997)
tratamiento con herbicidas espacialmente variable en granos de cereales hasta el 80% del área
no necesita ser tratada
Gerhards
(Alemania, 1998)
tratamiento herbicida espacialmente variable en cereales 40-50% menos de
uso de herbicidas
Harris
(Inglaterra, 1997) siembra, fertilización y fumigación espacialmente variables en trigo y patatas EURO 50-60
ventaja económica / ha con trigo,
EURO 240-250 con patatas
Ostergaard
(Dinamarca, 1997)
Aplicación espacialmente variable de N, P, K y cal en cereales
Ventaja económica de $ 40-50 / ha
Schmerler / Jürschik
(Alemania, 1997b)
Fertilización N espacialmente variable en cereales hasta 3,9 dt / ha aumento del rendimiento del cultivo. En promedio 25 kg / ha menos N con campos heterogéneos.
Resulta en más de 25 euros de ventaja económica / ha.
Swinton / Ahmad
(Estados Unidos, 1996)
Fertilización con nitrógeno espacialmente variable en la remolacha azucarera 74 $ / acre (~ 160 EURO / ha)
ventaja económica y aumentos de calidad
Reetz / Fixen
(Estados Unidos, 1995)
fertilización N espacialmente variable de todos los cultivos
en una granja
Ventaja económica de 43 $ / ha
Malzer y col.
(Estados Unidos, 1996)
fertilización N espacialmente variable en maíz 11-72 $ / ha económica
ventaja
Schmerler / Jürschik
(Alemania, 1997a) costos calculados para el uso de GPS (maquinaria y mano de obra) para una finca de 2000 ha aumento de costes de
35-40 EURO / ha y año 1)
Harris
(Inglaterra, 1997) costos calculados para el uso de GPS (equipo de maquinaria) para una finca de 320 ha aumento de costes de
30-35 EURO / ha y año 2)
1) incl. costes laborales
2) sin costes laborales

Fig.16: Economía de la agricultura de precisión

Varios estudios se han ocupado de los beneficios del rendimiento y el potencial de ahorro de los insumos, como se muestra en el centro de la figura. SCHMERLER y JÜRSCHIK (1997 b, p. 995), por ejemplo, muestran un aumento de rendimiento (trigo) de no muy 4 decitones por hectárea y una reducción promedio de 25 kg de nitrógeno / ha en sitios heterogéneos. En total, esto equivale a unos 50 euros en beneficios de rendimiento y potencial de ahorro por hectárea. Otros autores llegan a valores de entre 5o y 6o EURO con trigo o hasta 25o EURO con patatas (HARRIS, 1997, p. 953). Con la remolacha azucarera SWINTON / AHMAD (1996, p. 1015) encontró beneficios de rendimiento y calidad, así como potenciales de ahorro de hasta EURO 16o / ha.

Por otro lado, están los costos de la agricultura de precisión. Para las inversiones en la tecnología (imperfecta) HARRIS (1997, p. 953) ascienden a EURO 30 a 35 por hectárea para las grandes explotaciones (300 ha) en las condiciones actuales. Se puede esperar que estos costos disminuyan con la mejora simultánea de la tecnología.

No se puede hacer una declaración final sobre la excelencia de la agricultura de precisión desde el punto de vista económico sobre la base de los estudios disponibles. Sin embargo, generalizando, se puede decir que cuanto mayor es la heterogeneidad de la ubicación de la granja, más obvios son los beneficios económicos de la agricultura de precisión. Se está trabajando intensamente para remediar las imperfecciones de la tecnología, así como sobre los criterios de decisión, por ejemplo, para la tasa de fertilización con nitrógeno. Cabe destacar que los resultados de la investigación están indudablemente a favor de la gestión específica del sitio. En la discusión sobre la aplicabilidad de la nueva tecnología se debe tener en cuenta que no solo se deben considerar cuestiones de viabilidad económica para la finca individual, sino también que la agricultura de precisión permite grandes avances en la reducción de la presión que la agricultura ejerce sobre la agricultura. ambiente. Esto se aplica particularmente a la reducción de la lixiviación de nitrógeno y al ahorro de herbicidas.

También hay efectos adicionales de la agricultura de precisión. Mediante la adquisición de datos automatizada, la gestión de los sistemas biológico-técnicos mejorará tanto como la gestión general de la explotación. Se pueden esperar avances significativos en la gestión de las explotaciones. Simultáneamente, por así decirlo, como spin-off, el agricultor que se ha decidido a favor de la agricultura de precisión recibe la documentación de sus actividades, que en Alemania es requerida por las regulaciones de fertilización y ayuda con las solicitudes de fondos.

Un efecto adicional es que, por ejemplo, la compactación del suelo se puede registrar fácilmente mediante sensores que sondean la resistencia del suelo en el arado, lo que permite una reparación inmediata mediante una reacción en el lugar.

La tecnología de la agricultura de precisión también es adecuada para hacer más eficiente la gestión de flotas para optimizar el uso de máquinas cooperativas.

La agricultura de precisión es adecuada no solo para grandes explotaciones, sino también para la gestión de campos menores en regiones con estructuras agrícolas a pequeña escala. En este caso, el mismo cultivo se puede cultivar más allá de los límites de la propiedad en sitios de varios propietarios, porque el registro automatizado de los datos de la aplicación de entrada y la cosecha hace posible la liquidación individual de cuentas para todos los propietarios. Esto necesita la contabilidad de costos específica del sitio mencionada anteriormente.

Por último, pero no menos importante, también deberíamos pensar en las formas cambiantes de uso de la tierra del mañana, con la tecnología de la agricultura de precisión, los robots agrícolas parecen volverse más reales.

La agricultura de precisión es mucho más que la aplicación de factores de producción en un lugar específico, es una agricultura optimizada económica y ecológicamente que permite una mejor gestión.

REFERENCIAS:

Leer más
Agricultura de precisión y sostenibilidad

virtualizar todo el cultivo

Las granjas están utilizando análisis para resolver problemas poco probables. Intel es parte de una amplia red de investigadores y desarrolladores que trabajan con herramientas como sensores y drones para ayudarlos. Estas aplicaciones agrícolas emergentes pueden desencadenar un nuevo pensamiento sobre uno de sus problemas comerciales.

Cuando Nathan Stein escucha el término «Internet de las cosas», piensa en el maíz y la soja. La adaptación segundo a segundo de estas plantas al clima y las condiciones del suelo produce un flujo ininterrumpido de datos que lo ayudan a administrar mejor la granja de Iowa de su familia. Con el software de análisis desarrollado para agricultores, puede simular el impacto de los ajustes de agua, fertilizantes y pesticidas.

«Básicamente, puedo virtualizar todo el cultivo», dice Stein.

Stein se encuentra entre un número creciente de agricultores que utilizan la recopilación de datos en tiempo real y el análisis por computadora. Gracias a agricultores como Stein, así como a investigadores y empresas que desarrollan tecnología para ellos, la agricultura, la industria humana más antigua, se está convirtiendo en un campo de pruebas principal para sensores, drones y análisis de big data.

Estos métodos están ayudando a los agricultores a aumentar los rendimientos, los márgenes y la eficiencia a gran escala, objetivos de todas las industrias.

Algo que funcione “en el contexto de granjas a gran escala podría permitir esa aplicación en otros dominios”, dice Vin Sharma, director de estrategia, producto y marketing de Big Data Solutions en Intel.

Por ejemplo, un minorista podría usar un sensor de tráfico peatonal de función única para reemplazar el análisis de video al medir y mejorar la efectividad de las pantallas en la tienda. El gerente de un centro logístico podría insertar un sensor en un dron de uso general para verificar el inventario. Y en muchas otras industrias, los CIO podrían implementar análisis de datos derivados de sensores para controlar con precisión los recursos corporativos que van desde las materias primas hasta la potencia informática. El control dirigido promete eficiencias no solo dentro de la empresa, sino potencialmente a lo largo de la cadena de suministro.

Básicamente, puedo virtualizar todo el cultivo.

Nathan Stein, agricultor de Iowa
Científicos de campo de mujer y hombre con portátil
Anticipamos que el centro de datos y los dispositivos de borde evolucionarán juntos.

Vin Sharma, director de Soluciones de Big Data en Intel
Desde 2010, el agricultor de Iowa Stein ha utilizado imágenes aéreas de satélites y aviones para detectar información como la elevación, la temperatura, la humedad del suelo y los niveles de clorofila. Exporta imágenes y datos al software de mapeo y análisis de senseFly * —trabaja para la empresa suiza como enlace entre los clientes e ingenieros de la empresa— para identificar las áreas no saludables de sus cultivos.

Una cosa que Stein ha observado a través del proceso de recopilación y análisis de datos es hasta qué punto las condiciones en su granja pueden cambiar a lo largo del día. A medida que cambia el ángulo del sol y el calor se acumula en el suelo, “ves un cambio en los datos térmicos y ves que la transpiración de las plantas aumenta y disminuye”, dice.

Los datos que Stein derivó de las imágenes aéreas de la granja de su familia “rápidamente nos mostraron en la primavera cuánto daño no [instalar] más drenaje … le estaba costando a nuestro campo de maíz”, casi 40 bushels por acre.

“Este solo hecho nos impulsó a gastar miles de dólares para instalar una nueva tubería principal y laterales, para drenar adecuadamente los suelos anegados”, dice Stein.

Pronto, planea usar los drones y el software senseFly * para optimizar la distribución de fertilizantes en su granja. Usando el software de senseFly y un mapa de drones después del vuelo, pudo programar un tractor autónomo para distribuir una cantidad prescrita de fertilizante por todo el campo.

Los dispositivos como los drones inteligentes y los tractores autónomos plantean la pregunta de dónde se encuentra la inteligencia y dónde ocurrirá el procesamiento de datos: ¿en el equipo en el borde de la granja o en un centro de datos basado en la nube? Sharma dice que la respuesta es ambas.

“Hay un argumento algo engañoso de uno u otro en algunas partes de la industria”, dice. «Anticipamos que el centro de datos y los dispositivos de borde evolucionarán juntos».

Sharma da al sistema nervioso humano una metáfora adecuada. Quieres suficiente inteligencia reflexiva en el borde para sacar tu mano de una estufa caliente sin tener que «pensar» en ello. Pero la inteligencia central del cerebro puede ayudar a mejorar o anular acciones para crear un valor de mayor nivel. Las granjas futuras emparejarán dispositivos inteligentes semiautónomos con un sistema de comando central basado en la nube que se beneficia del análisis de datos en muchas ubicaciones.

Stein se hace eco de ese punto. “Los datos agrícolas son muy oportunos, deben capturarse en un momento muy preciso y deben funcionar en todo momento”, dice. En la granja actual, agrega, un agricultor es un «conocedor de datos».

Leer más
Agricultura de precisión y sostenibilidad

Uso de la agricultura de precisión para controlar las malezas resistentes a los herbicidas en Brasil

La aparición de malas hierbas en los campos agrícolas de producción de cereales y fibras ha causado pérdidas a los agricultores durante mucho tiempo. Con la introducción de genes de resistencia en especies cultivadas como la soja y el algodón, muchos creían que este problema se resolvería. En Brasil, la soja resistente al glifosato se cultiva desde 2003. Pero después de casi 15 años, el problema de las malezas no se ha resuelto y ha vuelto a cobrar importancia, principalmente debido a la aparición de malezas resistentes al glifosato. Como se puede ver en el mapa, el problema se está extendiendo en las principales regiones productoras de Brasil, principalmente en las áreas donde se han cultivado cultivos resistentes al glifosato, como soja, maíz y algodón.

La foto de abajo ilustra una escena común en los campos brasileños, la presencia de tres especies de malezas resistentes al glifosato en la misma área ( Digitaria insularis , Conyza canadensis y Eleusine indica ), más una docena de otras especies, pero con una ocupación espacial de menos del 50% del área total. Naturalmente, las malas hierbas no se distribuyen uniformemente por los campos. La mayoría de las veces se agregan en juncos principalmente debido a la forma de dispersión de las semillas. En otros, los brotes pueden ser plantas muy escasas o aisladas.

Malezas-resistentes-en-Brasil
Un escenario común en los campos brasileños: la presencia de tres especies de malezas resistentes al glifosato en la misma zona (Digitaria insularis, Conyza canadensis y Eleusine indica), más una docena de especies más.

Debido a esta variabilidad espacial, existe un gran potencial para la aplicación localizada de herbicidas. La fumigación de malezas localizada en tiempo real se basa en la identificación de la planta mediante un sensor y la aplicación instantánea de herbicida solo en el objetivo. El proceso de identificación de una planta se realiza reconociendo un patrón de reflectancia cuando se somete a una fuente de radiación. En este caso, los sensores generalmente están “activos” porque tienen su propia fuente de radiación, lo que les permite trabajar tanto de día como de noche.

Actualmente, existen dos equipos comerciales en Brasil que realizan la identificación y fumigación de malezas en tiempo real: WEEDit y WeedSeeker. Para la detección de plantas, el primer sistema se basa en la técnica de detección de la fluorescencia de la clorofila que se crea mediante la acción de una potente fuente de luz, mientras que el segundo utiliza la reflectancia en dos bandas espectrales. La tecnología de estas herramientas no se trata solo de los sensores, sino de la velocidad extremadamente rápida de las válvulas encargadas de abrir y cerrar las boquillas. En el caso de WEEDit, la tecnología Pulse Width Modulation (PWM) a una frecuencia de 60 Hz permite rociar con precisión la tasa correcta de herbicida sobre la maleza independientemente de las variaciones en la velocidad de la máquina.

MÁS DE RODRIGO TREVISAN
Conectividad
22 de enero de 2019
Diez conclusiones clave de la conferencia PrecisionAg VISION de 2019
Por Rodrigo Trevisan
Conectividad
24 de octubre de 2018
ConBAP 2018: de la recopilación de datos a la toma de decisiones
Por Rodrigo Trevisan
Conectividad
9 de julio de 2018
Aspectos destacados de la 14a Conferencia Internacional sobre Agricultura de Precisión
Por Rodrigo Trevisan
Otro beneficio de este tipo de sistemas es la posibilidad de realizar las aplicaciones con mayor frecuencia. Debido a que solo se rociará sobre las malezas, no es necesario esperar a que germinen todas las malezas y correr los riesgos de un bajo control debido a la presencia de malezas fuera de la etapa de control adecuada. Además, esperar puede darles a estas plantas la oportunidad de producir nuevas semillas, lo que agrava el problema para los cultivos futuros. Las aplicaciones más frecuentes reducirán naturalmente el banco de semillas en el área a lo largo de los años. Hay informes de productores australianos con ahorros de herbicidas del 98% después de 7 años usando la tecnología.

Una de las limitaciones del uso de estas herramientas radica en la capacidad limitada para diferenciar especies de plantas. Los dos equipos mencionados anteriormente tienen límites de detección ajustables que permiten apuntar a objetivos más grandes o más pequeños, pero sin la capacidad total para diferenciar especies. Con el objetivo de solucionar esta limitación, existen tecnologías que se están desarrollando y probando a nivel de investigación, principalmente utilizando reconocimiento de patrones en imágenes RGB (formato hojas) y cámaras hiperespectrales (intensidad de reflectancia en regiones específicas del espectro). Un ejemplo de este tipo de tecnología está siendo desarrollado por la startup estadounidense Blue River Technology. Su concepto de máquina inteligente para visualización y pulverización hace uso de visión por computadora e inteligencia artificial para la diferenciación de especies de plantas y su aplicación en tiempo real.

La presencia de malezas en diferentes niveles de infestación dentro de un solo campo hace posible el uso de herramientas de agricultura de precisión como una forma más eficiente de control de malezas a través de la aplicación localizada utilizando las tasas adecuadas requeridas para cada parte de un área agrícola. El aumento en la ocurrencia de malezas resistentes a herbicidas genera una mayor demanda de estas tecnologías, ya que las formas tradicionales de control tienen altos costos y baja eficiencia. El riesgo de introducción o selección de nuevas especies resistentes, asociado al lento desarrollo de nuevas moléculas herbicidas, hace que el manejo correcto de las malezas sea cada vez más importante para el mantenimiento de un sistema de producción sostenible. El control de malezas localizado con identificación de sensores y aplicación de herbicidas en tiempo real permite grandes ahorros de producto, así como reducir los impactos sobre el medio ambiente y contribuir a reducir el problema a largo plazo. Se deben desarrollar nuevas tecnologías para satisfacer estas demandas en los próximos años, ya que sin duda habrá un enorme mercado por explorar.

Leer más
Agricultura de precisión y sostenibilidad

Drones y tecnología punta la salvación para una ‘agricultura a distancia’

Los productores de alimentos tienen que seguir trabajando para asegurar el abastecimiento.Los productores de alimentos siguen trabajando para asegurar el abastecimiento.Paintec
En estos tiempos de quedarse en casa, a algunos sectores se les ha calificado como esenciales: sanitarios, seguridad, abastecimiento, limpiezas… todas esas profesiones detrás de nuestras necesidades básicas. Mientras crecen el teletrabajo -para quien puede-, los despidos y los ERTE, hay un sector que tiene que seguir al pie del cañón: la agricultura no echa el cierre, ya que la labor de los agricultores resulta fundamental para asegurar el abastecimiento de alimentos.

Pero los trabajadores del sector primario -agricultores, ganaderos, pescadores…- quieren también estar seguros ante la situación sanitaria, y por supuesto extremar las medidas de higiene y distanciamiento social.

Web para promocionar la venta a domiciliode productos de pequeños productores
La Consejería de Agricultura lanza un proyecto piloto para promocionar la venta a domicilio de los pequeños productores
El miedo a exponerse es real y la única manera de evitarlo es quedándose en casa, pero ¿cómo pueden minimizar los traslados quienes se dedican a una actividad tan esencial como la producción de fruta, verdura o cereal?

Las innovaciones tecnológicas y la agricultura de precisión se han convertido en la mejor solución para que los agricultores controlen sus cultivos a distancia.

Los agricultores pueden conocer todo lo que pasa en sus tierras desde el móvil o el ordenador a tiempo real, sin necesidad de desplazarse hasta sus explotaciones y reduciendo así su exposición.

Esta es la propuesta de Paintec, una empresa fundada hace un par de años en Ejea de los Caballeros (Zaragoza) que propone una plataforma integral de gestión agrícola basada en datos que provienen de drones, sensores y satélites. En definitiva, “una app con la que llevar el campo en el bolsillo y observar todos los cambios que se producen en él”, afirman desde la empresa.

Crece el interés por las tecnologías en el sector agrícola
El ministro de Agricultura, Pesca y Alimentación, Luis Planas, que ha comparecido en rueda de prensa junto a la portavoz del Gobierno, ha explicado el Real Decreto aprobado en el Consejo de Ministros ordinario celebrado esta mañana por el que se permite la contratación de mano de obra – alrededor de 75.000 personas – para la campaña de producción agrícola.
La reducción de módulos del IRPF beneficiará a productores de frutales y otras producciones agrícolas y ganaderas
Desde el pasado 15 de marzo, el número de visitas a la tecnología de esta empresa se ha disparado un 24%. La herramienta nació con el objetivo de “mejorar la productividad y eficiencia de un sector en el que tan solo el 7,1% de los agricultores usan de manera regular las nuevas tecnologías”, según una encuesta puesta en marcha por la propia empresa.

El escenario que se imaginaron sus creadores, claro, no fue el que vivimos, pero lo cierto es que la plataforma puede ser un recurso muy útil en la situación actual: “Permite minimizar los desplazamientos a las parcelas para hacer el seguimiento de los cultivos a pie. Aunque estos traslados están permitidos, cuanto menos se hagan, menor riesgo para los productores”, señala José Manuel Ruiz, cofundador de Paintec junto a su compañero Cristian Aldaz.

Desde el aire, los drones pilotados y los satélites generan imágenes espaciales que la herramienta procesa para ofrecer al agricultor toda la información que necesita, como por ejemplo, para detectar las malas hierbas. Todo ello reduciendo al máximo los desplazamientos.

¿Qué es la agricultura de precisión?
Frente a la agricultura tradicional, la conocida como agricultura de precisión permite reducir costes, utilizar la cantidad precisa de recursos y minimizar el impacto de su cultivo sobre el medioambiente. Colocados en la tierra, los sensores miden parámetros como la profundidad del suelo, su salinidad, textura y capacidad de retención de agua.

Según esta empresa, quienes utilizan sus servicios han conseguido “un ahorro de aproximadamente el 15% en gastos de insumo, mientras que su productividad ha aumentado un 5%”.

Los sensores miden parámetros como la profundidad del suelo, su salinidad, textura…Los sensores miden parámetros como la profundidad del suelo, su salinidad, textura…Paintec
La huerta a golpe de clic
Con la plataforma los agricultores pueden aumentar la producción de sus explotaciones y ahorrar en recursos tan preciados como el agua desde su ordenador, aunque “pronto podrán hacerlo también desde sus propios smartphones”, añade Ruiz.

Su manejo es muy sencillo y está basada en un modelo de negocio ‘freemium’ en el que la mayoría de los servicios son gratuitos, como la digitalización, monitorización por satélite e información agroclimática asociada a la parcela.

A3 Paintec ofrece también otros servicios más avanzados y de pago, como el cálculo de necesidades hídricas, la creación de mapas de prescripción de abonado, siembra y estimación de producción o la creación de cuadernos de campo digitales.

Además, desde la propia herramienta el agricultor podrá adquirir dispositivos como sondas, estaciones o sensores para la maquinaria, así como contratar vuelos con dron.

Leer más
Agricultura de precisión y sostenibilidad

Drones y agricultura de precisión

Que la agricultura 4.0 es una realidad ya no hay duda. Partiendo de esa premisa, multitud de nuevos conceptos son los que se manejan hoy en día, ni que decir tiene que de forma bastante habitual. Palabras como drones, agricultura de precisión, auto guiados por GPS, dosificación variable, uso de sensores, etc. se usan en las explotaciones agrícolas españolas de forma cotidiana.

El único objetivo de los agricultores es tener una explotación agrícola lo más rentable posible y eso pasa por la incorporación de las nuevas tecnologías y especialmente los drones, que sin duda alguna nos dan una visión que antes era imposible tener, gracias al coste reducido de estos aparatos y la facilidad de manejo que ofrecen, pues tienen una interfaz hombre/máquina muy agradable.

Desde hace unos años, el uso de drones por empresas especializadas en el sector está aumentando considerablemente. Anteriormente, los drones eran prácticamente de uso militar y aeroespacial mientras que la agricultura de precisión pasaba por utilizar imágenes satelitales. Esto generaba un alto coste que ha sido paliado por los drones, que nos permiten hacer imágenes en poco tiempo y a un bajo coste.

Para entrar un poco más en detalle, os comentarios los diferentes tipos de drones que se pueden utilizar en el sector primario y luego hablaremos de las cámaras de fotos utilizadas para lograr unos buenos mapas de rendimientos que serán la piedra angular de la agricultura de precisión que hoy en día está tan de moda.

Drone es una palabra inglesa que significa zángano, el cual se emplea para referirse a las aeronaves no tripuladas o controladas remotamente. Es debido al ruido que normalmente generan los rotores que es muy similar al zumbido del aleteo de los zánganos. Una clasificación de drones podría ser según estos tres criterios:

Según el método empleado para la generación de sustentación.
Según el tipo de configuración de ala (ala fija, ala rotatoria y drones híbridos).
Según el tipo de aplicación.
Los drones de ala fija son aquellos que tienen las alas unidas de forma fija al fuselaje de la aeronave. La sustentación es generada por las diferencias de presión que se generan entre la parte inferior y superior del ala. Los drones de ala rotatoria son aquellos en los que sus alas (también llamadas palas) giran alrededor de un eje. Los drones con alas rotatorias pueden despegar de forma vertical y presentan un alto nivel de maniobrabilidad pudiendo volar a alturas muy bajas que permiten tomar fotos con un elevado nivel de resolución. Los drones híbridos son capaces de despegar y aterrizar de forma vertical a la vez que con sus alas fijas pueden realizar vuelos a alta velocidad aunque, tal vez, estos son los menos utilizados sobre todo en el sector agrícola.

Respecto a los tipos de drones según su aplicación, nos centraremos en las aplicaciones agrícolas, aunque hay multitud de aplicaciones como inspección de obra civil, monitorización de contaminación atmosférica, levantamiento de mapas, etc.

A continuación numeraremos algunas de las funciones que los drones pueden realizar en el sector agrícola:

Controlar el terreno, permitiendo al agricultor el tener una visión de la falta de riego y el nivel de humedad de las parcelas.
Examinar los cultivos para poder detectar posibles plagas y diferentes estados de vegetación.
Supervisión de áreas trabajadas (tratamientos fitosanitarios, riegos, etc) para tener información detallada de la evolución de los cultivos.
Respecto a las cámaras fotográficas embarcadas en los drones, hay varios tipos que comentaremos a continuación

Cámara RGB.
También llamadas cámaras de imagen real, permiten recoger fotos y vídeo de los cultivos y parcelas con un formato visual para el ojo humano. Disponen de un potente zoom, que permite al agricultor llegar a zonas donde sería imposible tener detalles tan exhaustivos como los que ofrece este tipo de cámaras junto con la comodidad de obtención de dichas fotos.

Cámara multiespectral.
Existen otro tipo de radiaciones que van más allá del RGB y que son muy importantes dentro de la agricultura de precisión. Para poder ver este tipo de radiaciones (el ojo humano no es capaz) se utiliza un sensor multiespectral. Con este tipo de cámaras vamos a ser capaces de captar el red edge (0,68 a 0,75 micras) y el infrarrojo cercano (0,75 a 1,7 micras) que son las bandas de más interés para el sector agrícola. La actividad clorofílica de las plantas refleja más luz en este espectro infrarrojo cercano (invisible para el ojo) por lo que a través de la cámara multiesprectral y los cálculos matemáticos, obtendremos la intensidad de esta actividad y por tanto una visión de la salud o vigor de los cultivos. A partir de las imágenes multiespectrales se pueden calcular diferentes índices de vegetación que nos indican la salud y el bienestar de la vegetación. El índice más conocido es el NDVI (Índice de Diferencia Normalizada de Vegetación) mediante el cual podremos calcular el vigor de la planta, es decir, su estado metabólico.

Cámara termográfica
Como su nombre indica, son cámaras que generan imágenes térmicas o también llamadas imágenes termográficas. A través de ellas se puede detectar situaciones de estrés hídrico midiendo la temperatura de los cultivos. Su funcionamiento se basa en que todos los objetos emiten radiación infrarroja (calor), y esta emisión es mayor cuanto más calientes se encuentren. Las cámaras térmicas son capaces de captar estas radiaciones ya que suelen estar calibradas para trabajar con el infrarrojo térmico (8 a 14 micras).

La nueva agricultura, la agricultura inteligente, va calando a todos los niveles de nuestro sector agrícola. Hoy en día es un camino que el agricultor está comenzando y que ya lleva mucho aprendido. Sin duda alguna, la fusión de agricultura y nuevas tecnologías ha llegado a nuestras vidas para quedarse y poco a poco estará tanto en las grandes como en las pequeñas explotaciones agrícolas españolas… sin duda alguna, este es un mundo apasionante que os recomiendo no perdáis de vista porque será de gran ayuda y una fuente de buenas noticias y alegrías para el agricultor.

Leer más
Agricultura de precisión y sostenibilidad

Mapas de rendimiento en agricultura de precisión

Monitores de rendimiento: una de las fuentes pioneras de PA
Los monitores de rendimiento han estado disponibles desde principios de la década de 1990. Han sido clave en el desarrollo de la agricultura de precisión porque fueron uno de los primeros medios para definir, cuantificar y caracterizar la variabilidad dentro del campo en la producción de cultivos.

Figura 1. Mapa de rendimiento que muestra la variabilidad espacial del rendimiento dentro del campo

Estos monitores están montados en cosechadoras y miden en tiempo real la cantidad de grano que pasa a través de la cosechadora cuando se está recolectando la cosecha. Tenga en cuenta que el tipo de medición de rendimiento que se realiza depende de la ubicación de estos sensores dentro de la máquina. Cuando la cosechadora pasa por el campo, la cosecha (tallos y granos) se corta al nivel del cabezal y fluye en la cosechadora a través del transportador de alimentación. Los sistemas de trilla luego separan los granos de los tallos. Los granos se limpian con el ventilador y las mesas de cribado y se abren camino hasta el tanque de almacenamiento, la tolva, que fluye a través del canal del sinfín de granos y el elevador de granos. Los tallos se rechazan de la cosechadora.

Figura 2. Diagrama de una cosechadora convencional (Fuente: Wikipédia).

Adquisición de datos de rendimiento dentro del campo: cosechadoras combinadas y monitores de rendimiento
Los monitores de rendimiento generalmente se instalan cerca del elevador de granos (Figura 3). Generalmente se reportan dos sistemas principales: los caudalímetros volumétricos (Figura 3, a, b) y los caudalímetros másicos (Figura 3, c, d, e, f) [Berducat, 2000; Chung et al., 2017].

Los sensores de flujo de volumen estiman el volumen de grano ya sea en una rueda de paletas situada justo después del elevador de granos (Figura 3, a) o directamente dentro del elevador de granos usando una barrera de luz unidireccional (Figura 3, b). En el primer caso, un sensor de nivel mide el nivel de grano que fluye a través de la rueda. En el segundo caso, el volumen de grano se estima por la duración de la interrupción de la luz mientras el grano fluye a través del elevador de granos. A continuación, los volúmenes de grano se convierten en masa de grano utilizando el peso específico del grano.
Los sensores de flujo másico se basan en el principio de medición de la fuerza (Figura 3, d, e, f) o en la absorción de rayos gamma por masa (Figura 3, c) (Kormann et al., 1998). En el primer caso, el peso del grano se estima mediante un transductor de fuerza que mide la fuerza de impacto del grano al final del elevador de grano. En el segundo caso, un detector de radiación mide la absorción de rayos gamma (emitidos por la fuente de iones de radiación) por el grano, que luego se utiliza para estimar el peso del grano.

Figura 3. Monitores de rendimiento: sensores de flujo de masa y volumen (fuente: Kormann et al., 1998)

Todos los sistemas de la cosechadora que entran en juego para calcular el rendimiento del cultivo se muestran en la Figura 4. Los sensores de humedad se utilizan para proporcionar un registro de rendimiento a un nivel de humedad de referencia. Estos sensores generalmente se colocan cerca del sinfín de granos o del elevador de granos para estimar la humedad del grano usando las propiedades dieléctricas del grano cosechado. Tenga en cuenta que los sistemas de posicionamiento permiten asociar una ubicación en el espacio para producir registros y, en consecuencia, permiten generar mapas de rendimiento.

Figura 4. Tecnologías de mapeo de rendimiento dentro de una cosechadora (fuente: Kormann et al., 1998; Chung et al., 2017)

Características de los datos dentro del campo
La adquisición de datos de rendimiento dentro del campo puede entenderse como un procedimiento secuencial a través del tiempo durante el cual una cosechadora adquiere información espacial de rendimiento. El proceso de recopilación de datos sigue una dinámica temporal, es decir, las observaciones se registran en un orden específico una a la vez a medida que la máquina pasa por el campo (Figura 5). La máquina puede ser modelada simplemente por un elemento estructurador que se mueve por el campo, es decir, un rectángulo cuyas dimensiones están definidas por las características de la cosechadora y los sensores integrados asociados (monitor de rendimiento en este caso). Las mediciones de rendimiento sobre la marcha son observaciones puntuales y cada punto sintetiza la respuesta de rendimiento sobre el elemento estructurante correspondiente. La resolución espacial de rendimiento está controlada por la distancia entre registros consecutivos y determinada por la distancia entre pasadas adyacentes de la máquina. La distancia espacial entre observaciones consecutivas está relacionada con la velocidad de la máquina y la frecuencia de muestreo del sensor. En un campo dado, esta frecuencia de adquisición es generalmente estable, lo que significa que la distancia entre registros consecutivos solo depende de la velocidad de desplazamiento de la cosechadora. Por otro lado, cuando una cosechadora con un monitor de rendimiento de grano a bordo pasa por un campo, la distancia entre pasadas adyacentes está relacionada con el ancho de la barra de corte porque todo el campo tiene que ser cosechado. La distancia espacial entre observaciones consecutivas está relacionada con la velocidad de la máquina y la frecuencia de muestreo del sensor. En un campo dado, esta frecuencia de adquisición es generalmente estable, lo que significa que la distancia entre registros consecutivos solo depende de la velocidad de desplazamiento de la cosechadora. Por otro lado, cuando una cosechadora con un monitor de rendimiento de grano a bordo pasa por un campo, la distancia entre pasadas adyacentes está relacionada con el ancho de la barra de corte porque todo el campo tiene que ser cosechado. La distancia espacial entre observaciones consecutivas está relacionada con la velocidad de la máquina y la frecuencia de muestreo del sensor. En un campo dado, esta frecuencia de adquisición es generalmente estable, lo que significa que la distancia entre registros consecutivos solo depende de la velocidad de desplazamiento de la cosechadora. Por otro lado, cuando una cosechadora con un monitor de rendimiento de grano a bordo pasa por un campo, la distancia entre pasadas adyacentes está relacionada con el ancho de la barra de corte porque todo el campo tiene que ser cosechado.

Figura 5. Adquisición de datos de rendimiento dentro del campo (puntos azules) con una cosechadora (fuente: Leroux et al., 2018a)

Por lo tanto, estas observaciones están distribuidas irregularmente en el espacio porque

las distancias entre filas y entre filas son diferentes y
(ii) las condiciones de adquisición, como la precisión del GNSS o la velocidad de combinación variable, pueden afectar la distribución espacial de las observaciones, y
(iii) pueden faltar algunas observaciones (pérdida de la señal de posicionamiento, tarjeta de memoria llena).
La información de rendimiento también es muy densa (miles de puntos por hectárea) y muy ruidosa debido al error estocástico en la operación del sensor, la variabilidad local intrínseca en la producción y los errores asociados con el paso de la cosechadora por el campo (Simbahan et al., 2004). ; Sudduth y Drummond, 2007). Sin embargo, los datos de rendimiento dentro del campo generalmente exhiben una estructura espacial bastante fuerte, es decir, las observaciones espaciales están bien estructuradas dentro de los campos y los patrones espaciales de rendimiento son claramente visibles (Pringle et al., 2003). Como la mayoría de los cultivos herbáceos deben recolectarse cada año, es probable que estén disponibles bases de datos históricas de mapas de rendimiento en muchos sistemas arables. Sin embargo,

Disposición y usos
En la comunidad científica de agricultura de precisión, los datos de rendimiento se utilizan generalmente para (i) cuantificar y caracterizar la variabilidad dentro del campo, (ii) correlacionar el rendimiento con una variable auxiliar y (iii) validar la idoneidad de una aplicación de modulación. Y debe decirse que no es muy complicado encontrar investigaciones que utilicen estos datos de rendimiento dentro del campo en algún momento. Sin embargo, un reciente estudio de mapeo científico (una especie de mapa mental) también mostró que el interés de la comunidad científica de agricultura de precisión en los mapas de rendimiento había disminuido entre los períodos 2000-2009 y 2010-2016 (Pallottino et al., 2017).

Cuando uno está interesado en el uso de sensores de rendimiento en el campo, es otra cuestión… Ya casi no hay estadísticas para Francia (por eso el observatorio francés de usos digitales en Francia pronto publicará una infografía sobre el tema). No obstante, se pueden encontrar estadísticas más o menos recientes de varios países, además de Francia, en informes técnicos y bibliografía científica. ¡Los invito a tomar estas estadísticas en retrospectiva!

En primer lugar, debemos tener claro el hecho de que estas tendencias en el uso varían mucho entre países (y en ocasiones incluso regiones) y las culturas que se monitorean. Los agricultores estadounidenses pueden haber sido los primeros usuarios en involucrarse en tales tecnologías de mapeo de rendimiento (Griffin et al., 2004; Fountas et al., 2005). Estos autores han informado que, en 2005, alrededor del 90% de los monitores de rendimiento en el mundo estaban en los EE. UU. Griffin y Erickson (2009) también han proporcionado algunas tasas de adopción de una Encuesta de gestión de recursos agrícolas. Según el estudio y los datos disponibles, el 28% de los acres plantados con maíz de EE. UU. (En 2005), el 10% del trigo de invierno (en 2004) y el 22% de la soja (en 2002) se cosecharon con una cosechadora equipada con un monitor de rendimiento. Norwood y Fulton (2009) han concluido en su estudio que el 32% de los agricultores de EE. UU. Usaban sistemas de monitoreo de rendimiento. La Figura 6 muestra los resultados de otro estudio que investiga la adopción de sistemas de mapeo de rendimiento por cultivo en Estados Unidos (Schimmelpfennig, 2016). Incluso si las estimaciones no son exactamente las mismas, las tendencias pueden considerarse similares. Con respecto a los cultivos investigados, claramente parece que la producción de cultivos como el maíz, la soja y el trigo ha sido seguida cada vez más por los agricultores desde principios de la década de 2000 a través de tecnologías de mapeo de rendimiento. Dadas las tendencias observadas, se debería esperar que la adopción en campañas más recientes (2017, 2018) sea nuevamente mayor. Un estudio más reciente también señaló el hecho de que las granjas de arroz en EE. UU. Habían adoptado en gran medida tecnologías de monitoreo de rendimiento,

Figura 6. Adopción de tecnologías de mapeo de rendimiento por cultivo en Estados Unidos

Las tasas de adopción de tecnologías de mapeo de rendimiento no se informan tan ampliamente en otros países, pero algunos estudios nacionales pretendían proporcionar algunas cifras detalladas. Según el Departamento de Medio Ambiente, Alimentación y Asuntos Rurales, los agricultores ingleses han experimentado un pequeño aumento en la adopción de mapas de rendimiento del 7 al 11% entre 2009 y 2012 (DEFRA, 2013). En Australia, McCallum y Sargent (2008) han informado de una tasa de adopción muy baja de tecnologías de mapeo de rendimiento (menos del 1%). Dentro del mismo país, se estimó que se habían utilizado alrededor de 800 monitores de rendimiento en el año de cosecha 2000 (Mondal & Basu, 2009). Fountas y col. (2005) han evaluado que alrededor de 400 agricultores daneses, 400 británicos, 300 suecos y 200 alemanes habían adoptado monitores de rendimiento para el año 2000. También se han informado tecnologías de mapeo de rendimiento en países en desarrollo (Say et al., 2017). En Argentina, Mondal y Basu (2009) informaron que alrededor del 4% del área de granos y semillas oleaginosas se había cosechado mediante cosechadoras con monitores de rendimiento en 2001 (se estaban utilizando 560 monitores de rendimiento). Según Keskin y Sekerli (2016), alrededor de 500 cosechadoras combinadas (3% en todo el país) están equipadas con sistemas de monitoreo de rendimiento en granjas de Turquía. Akdemir (2016) proporcionó una menor tasa de adopción de tecnologías de mapeo de rendimiento (310 cosechadoras en lugar de 500) en el mismo país. Según Keskin y Sekerli (2016), alrededor de 500 cosechadoras combinadas (3% en todo el país) están equipadas con sistemas de monitoreo de rendimiento en granjas de Turquía. Akdemir (2016) proporcionó una tasa de adopción más baja de tecnologías de mapeo de rendimiento (310 cosechadoras en lugar de 500) en el mismo país. Según Keskin y Sekerli (2016), alrededor de 500 cosechadoras combinadas (3% en todo el país) están equipadas con sistemas de monitoreo de rendimiento en granjas de Turquía. Akdemir (2016) proporcionó una tasa de adopción más baja de tecnologías de mapeo de rendimiento (310 cosechadoras en lugar de 500) en el mismo país.

Ventajas y límites de los datos de rendimiento dentro del campo
Si bien es evidente que la adopción de tecnologías de cartografía de rendimiento está aumentando tanto en los países desarrollados como en desarrollo, uno puede preguntarse qué factores y aspectos de los datos de rendimiento dentro del campo pueden haber contribuido a una adopción tan lenta de tecnologías de cartografía de rendimiento. Los monitores de rendimiento montados en cosechadoras han estado disponibles desde principios de la década de 1990. Sin embargo, los datos de rendimiento todavía tienen dificultades para ser un componente decisivo del proceso de toma de decisiones en los estudios de agricultura de precisión. En términos de la utilidad de los datos de rendimiento, la comunidad científica ha informado de múltiples problemas. En primer lugar, está claro que los patrones de rendimiento espacial se originan a partir de una interacción entre las condiciones de manejo, climáticas y ambientales (suelo, paisaje, ataques de plagas, etc.) dentro de una temporada de cultivo. lo que significa que no es posible derivar mapas de aplicación de tasa variable directamente durante un año n basándose únicamente en los datos de rendimiento en el año n-1. En segundo lugar, se reconoce que en cultivos anuales y perennes, la variabilidad temporal del rendimiento es a menudo más fuerte que la variabilidad espacial del rendimiento, lo que puede dificultar los análisis en períodos cortos y largos (Blackmore et al., 2003; Bramley y Hamilton, 2004; Eghball y Power, 1995; Lamb et al., 1997). Esta variabilidad temporal se debe esencialmente a factores no estables, como los patrones climáticos o el tipo de cultivos que se cultivan cada año (Basso et al., 2012). Varios autores han declarado que la cantidad de años de datos de rendimiento disponibles para realizar análisis temporales de rendimiento fue fundamental (Bakhsh et al., 2000; Kitchen et al., 2005) y algunos incluso han intentado proponer un número mínimo de años necesarios para obtener resultados fiables (Ping y Dobermann, 2005). Además de eso, los datos de rendimiento a menudo vienen con una gran cantidad de observaciones defectuosas como resultado del paso de la cosechadora dentro de los campos, que no se corresponden con el rendimiento que debería haberse obtenido en las condiciones de cultivo en el campo (esto ser discutido en elpróxima publicación ). Algunas de estas observaciones erróneas se informan ampliamente en la literatura, por ejemplo, retraso del flujo, tiempos de llenado y vaciado, cambios abruptos de velocidad o barra de corte parcialmente usada (Arslan y Colvin, 2002; Sudduth y Drummond, 2007). Se han propuesto algunas mejoras, por ejemplo, sensores para medir en tiempo real el ancho de corte (Zhao et al., 2010), pero la mayoría de las cosechadoras no están equipadas con estas nuevas tecnologías. Estos errores, si no se toman en cuenta, pueden influir en las decisiones agronómicas sobre los campos (Griffin et al., 2008). Desde una perspectiva más práctica, también se puede argumentar que los usuarios finales solo pueden obtener la información sobre el rendimiento al final de la temporada de crecimiento, lo que podría constituir una limitación en términos de la herramienta de apoyo a la toma de decisiones.

Sin embargo, desde el punto de vista de la agricultura de precisión, estos datos de rendimiento de alta resolución son una fuente de información muy valiosa que sería aberrante no considerar (Florin et al., 2009). Los patrones espaciales de rendimiento son una información valiosa para caracterizar mejor las fuentes de variabilidad espacial en los campos. Los agricultores están interesados ​​en conocer los patrones espaciales y temporales del rendimiento medio en sus campos para poder tomar decisiones de manejo informadas y confiables. Se ha demostrado que, a pesar de una fuerte variabilidad temporal, a menudo era posible detectar patrones espaciales de rendimiento consistentes a lo largo de los años (Kitchen et al., 2005; Taylor et al., 2007). Algunos patrones de rendimiento se encontraron consistentes incluso en diferentes cultivos y condiciones climáticas variables. Además, Los patrones espaciales de rendimiento pueden brindar información relevante con respecto a las características del suelo dentro del campo o pueden ayudar a representar la influencia de otros factores externos, como las prácticas de manejo y las condiciones climáticas (Diker et al., 2004). Por ejemplo, Taylor et al. (2007) mostraron que, en partes específicas de su estudio de campo, el manejo de la rotación de cultivos en años anteriores originó variaciones en los patrones espaciales de rendimiento. Otros autores han encontrado que las áreas de alto rendimiento en años secos podrían, al mismo tiempo, ser áreas de bajo rendimiento en años húmedos, lo que podría brindar información crítica con respecto a las características del suelo dentro del campo (Colvin et al., 1997; Sudduth et al. al., 1997; Taylor et al., 20 07). Otra gran ventaja de estos conjuntos de datos de rendimiento es su accesibilidad. Algo que se consideró como un defecto en el párrafo anterior también puede verse como un activo fuerte. De hecho, en la mayoría de los casos, la cosecha debe realizarse, lo que significa que estos datos se pueden recopilar anualmente una vez que los agricultores han invertido en monitores de rendimiento y, en consecuencia, se pueden construir grandes bases de datos de mapas de rendimiento. Finalmente, debe argumentarse que los datos de rendimiento dentro del campo están directamente relacionados con el rendimiento del cultivo y, por lo tanto, con el margen bruto del campo. Como tal, estos datos brindan información práctica y muy comprensible a los agricultores y asesores. Debe argumentarse que los datos de rendimiento dentro del campo están directamente relacionados con el rendimiento del cultivo y, por lo tanto, con el margen bruto del campo. Como tal, estos datos brindan información práctica y muy comprensible a los agricultores y asesores. Debe argumentarse que los datos de rendimiento dentro del campo están directamente relacionados con el rendimiento del cultivo y, por lo tanto, con el margen bruto del campo. Como tal, estos datos brindan información práctica y muy comprensible a los agricultores y asesores.

¿Cómo valorizar los mapas de rendimiento?
Sin entrar en los detalles de todos los proyectos que podrían llevarse a cabo utilizando mapas de rendimiento, aquí hay un pequeño resumen de lo que se podría hacer. Algunas de estas ideas se han abordado en el manuscrito de tesis que encontrará en el sitio web. Algunas de estas ideas son bastante operativas, otras son más exploratorias. ¡La lista obviamente no es exhaustiva!

Espacialice los modelos agronómicos con datos de rendimiento de alta resolución. Por ejemplo, se había trabajado en planes de fertilización con P / K para evaluar en qué medida la información sobre el rendimiento dentro del campo podría usarse para refinar los planes de fertilización, incluido el refinamiento de los potenciales de rendimiento dentro del campo y las exportaciones de P / K dentro del campo.
Espacializar mapas de rendimiento / rentabilidad económica en granjas (este será el tema de una próxima publicación)
Utilice series de tiempo de rendimiento para comprender mejor los potenciales de rendimiento y las brechas de rendimiento dentro del campo. Este trabajo fue abordado en el marco de la tesis
Evaluar el potencial de acciones de modulación en un terreno.
Validar la relevancia de los experimentos de campo
Mejorar el conocimiento del rendimiento a una escala espacial determinada (región, territorio, etc.) para una cooperativa o un ascensor que quiera obtener suministros.
Utilice mapas de rendimiento para guiar las campañas de muestreo de campo
Utilice series de tiempo de rendimiento para mejorar la comprensión de los factores que limitan el rendimiento en las parcelas. Se evocaron pistas durante la discusión del manuscrito de tesis.
Utilice series de tiempo de rendimiento para evaluar el riesgo para un agricultor de no cambiar sus prácticas o no participar en prácticas de agricultura de precisión o modulación. Se evocaron pistas durante la discusión del manuscrito de tesis.
-….

Una última crítica para los fabricantes.
Acabamos de hablar sobre la accesibilidad de los datos de rendimiento; hablemos de interoperabilidad. Si comienza a trabajar con datos de rendimiento, se dará cuenta rápidamente de que hay una cantidad impresionante de formatos de datos proporcionados por los fabricantes…. ¡Pero estos son en su mayoría formatos privados! Si no tiene el software propietario que lo acompaña, buena suerte … Entonces tendrá que desarrollar módulos específicos para poder leerlos. Súmale a eso el hecho de que cada constructor mide las variables que le interesan, y que las unidades de medida son diferentes y te arrancarás el pelo bastante rápido.

Leer más
Agricultura de precisión y sostenibilidad

Manejo Integrado de Malezas para una Agricultura de Precisión Sostenible

Desde el advenimiento de la agricultura, el manejo de malezas ha sido un componente crítico del sistema de producción. Sin embargo, las estrategias de manejo de malezas son específicas de cada cultivo. Por ejemplo, en el centro de los Estados Unidos, los nativos americanos usaron calabazas y frijoles plantados entre plantas de maíz para eliminar las malezas, mientras que los colonos usaron la labranza (Clay et al., 2017). Cualquiera que haya cuidado un jardín sabe de malas hierbas. Al pasar de parcelas de jardín a campos agronómicos, una sola temporada de mala gestión puede convertir un campo relativamente libre de malas hierbas en un parche de malas hierbas. Esto se debe a que el suelo contiene millones de semillas de malezas viables de múltiples especies por acre. Si hay emergencia y supervivencia de solo el 1% de 1 000 000 de semillas, el resultado es 10 000 plantas por acre. Dependiendo de la especie, competencia de plantas y tiempo de emergencia,

Leer más
Agricultura de precisión y sostenibilidad

Usos de la tecnología de precisión en la exploración de cultivos

La exploración de cultivos, también conocida como exploración de campo, es la acción muy básica de viajar a través de un campo de cultivo mientras se hacen paradas frecuentes para realizar observaciones. La exploración de cultivos se realiza para que un agricultor pueda ver cómo crecen las diferentes áreas de su campo. Si hay problemas durante la temporada de crecimiento, el agricultor puede trabajar para mitigarlos para que esos problemas no afecten el rendimiento en el momento de la cosecha. Si los problemas pasan desapercibidos o no se atienden durante la temporada de crecimiento, pueden limitar potencialmente el rendimiento total, reduciendo así los ingresos por la venta del cultivo u otras intenciones para el cultivo, como la alimentación del ganado.

Hay muchos métodos diferentes de exploración de cultivos. Si bien los métodos tradicionales pueden incluir caminar por el campo y observar las plantas manualmente, todavía se utilizan piezas particulares de equipo, incluidas notas de campo para que el agricultor pueda tener en cuenta las plantas y las áreas que necesitan más atención, una navaja de bolsillo y bolsas para tomar muestras. y finalmente una lente de aumento manual para que el agricultor pueda ver de cerca y tener una mejor idea de la salud de sus plantas.

La exploración de cultivos y campos es crucial para cada etapa de la vida útil del cultivo. La exploración de campo previa a la siembra puede mostrar al agricultor las poblaciones de malezas, incluidas las malezas que crecen y la etapa de crecimiento en la que se encuentran. Cuando llega el momento de sembrar, la exploración de campo puede mostrarle al agricultor información que lo lleve a elegir qué profundidad de semilla o tasa de semilla deben plantar, así como indicadores tempranos de tratamientos o selección de semillas. Una vez completada la siembra, la exploración frecuente ayudará a mostrar a los agricultores las semillas dañadas, los primeros signos de plagas y muchos otros factores. Cuando los cultivos comienzan a germinar y a establecerse y enraizarse, la exploración continua puede ayudar a prevenir el daño de las malezas, el daño de las plagas y el rendimiento de los pesticidas o fertilizantes después de la pulverización. Es importante seguir explorando a intervalos regulares durante la vida de la planta, ya que esta exploración podría revelar problemas de plagas. problemas de humedad del suelo y una variedad de otros riesgos contra los que se podría combatir. Crop Scouting les dice a los agricultores mucho sobre sus plantas y puede ayudarlos a mejorar el rendimiento y maximizar la eficiencia de los cultivos.

A medida que las tecnologías de la agricultura de precisión han avanzado, los agricultores han recibido una gran ayuda en lo que respecta a la exploración de cultivos. Por ejemplo, en lugar de cuadernos de campo, hay varias aplicaciones móviles diferentes que son compatibles con diferentes tipos de dispositivos móviles, incluidas tabletas y teléfonos inteligentes que ayudan a los agricultores a mantener registros precisos de sus campos, al mismo tiempo que les brindan la oportunidad de comparar estas notas. con años anteriores o diferentes áreas del campo. También con el avance de los sistemas de posicionamiento global (GPS) y los vehículos aéreos no tripulados(UAV), los agricultores ni siquiera necesitan caminar por sus campos. Estas nuevas tecnologías pueden ayudar a mostrar a los agricultores información que los humanos no pueden ver a simple vista, así como señalar con precisión dónde están las áreas objetivo para brindar asistencia.

Uso del GPS en la exploración de cultivos
Los sistemas de posicionamiento global son una herramienta extremadamente útil cuando se trata del avance de la exploración de cultivos en la agricultura de precisión. La exploración de cultivos siempre se ha basado en que los agricultores recuerden dónde han explorado y tomen nota de eso, aunque con el uso de GPS, los agricultores ahora tienen un registro preciso de hasta un pie de dónde han estado. Con estos datos de ubicación precisos, pueden tomar notas y tener ubicaciones específicas de dónde se encuentran las plagas, la mala temperatura del suelo o la humedad. Con la precisión de los sistemas de posicionamiento global, los agricultores también pueden mitigar con precisión las amenazas que encuentran en sus campos.

El GPS se ha incorporado ahora a muchas piezas de tecnología diferentes que ayudan a los agricultores a explorar sus campos de manera mucho más eficiente y precisa. Un ejemplo de estas tecnologías incluye diferentes aplicaciones que están disponibles para tabletas o teléfonos inteligentes. Estas aplicaciones ayudan a los agricultores no solo a marcar su ubicación exacta en un campo, sino también a hacer notas de campo, comparar notas de años anteriores y más. Estas aplicaciones pueden ayudar a mostrar a un agricultor dónde se encuentran exactamente en una foto aérea de las áreas de interés de su granja, así como ayudar a los agricultores a tomar decisiones futuras basadas en problemas de cultivos anteriores que hayan tenido.

UAV en la exploración de cultivos
Los UAV son una pieza de tecnología que se ha desarrollado y perfeccionado para fines agrícolas en los últimos 10 años. Los UAV, también conocidos como vehículos aéreos no tripulados, se perfeccionan y desarrollan constantemente para que sean más eficientes, fáciles de usar y efectivos. Dos modelos principales de UAV usados ​​en agricultura son la plataforma de ala fija, que es muy similar a un avión, aunque está reducida y controlada con un control remoto o GPS. El segundo modelo es el multicóptero; este modelo es similar a un helicóptero, aunque generalmente tiene más hélices; algunos multicópteros tienen entre 4 y 8 hélices. Cuantas más hélices se agreguen a un helicóptero múltiple, generalmente se proporciona más estabilidad y potencia a la máquina, esto hace que sea más fácil volar y maniobrar en diferentes condiciones climáticas.

Los UAV han ayudado al sector agrícola combinando su tecnología con la de las cámaras infrarrojas. Estas dos piezas de tecnología combinadas significan que un agricultor puede obtener una vista aérea de su granja y ver sus cultivos desde una perspectiva completamente nueva. Los UAV también son capaces de usar estas cámaras infrarrojas para generar una variedad de información diferente, que incluye: qué especies hay en sus campos (exploración de malezas y cultivos), niveles de humedad del suelo o las plantas, etapas de desarrollo de las plantas, salud de las plantas y mucho más. . Estos UAV brindan a los agricultores una visión más integral de lo que está sucediendo en sus campos y con el uso de estos UAV, los agricultores pueden comprender mejor sus cultivos no solo campo por campo, sino planta por planta. Esto se debe a que algunos UAV ‘ s son cámaras portadoras capaces de mostrar un píxel como un pie de tierra, esto significa que el agricultor puede ver cada pie de tierra en su campo y comprender una amplia gama de información sobre ese terreno en particular. Los UAV están ayudando a los agricultores a realizar prácticas agrícolas más precisas y con esta precisión se obtiene un mejor rendimiento.

Leer más